APPENDIX A

LIMITED SHALLOW SUBSURFACE INVESTIGATION AND CONTAMINATED SOIL SPOT CLEANUP

June 2019 Appendix A

SUBMITTED TO:
Environmental Science
Associates
5309 Shilshole Avenue NW,
Suite 200
Seattle, WA 98107

Shannon & Wilson, Inc. 400 N. 34th Street, Suite 100 Seattle, WA 98103

(206) 632-8020 www.shannonwilson.com

LIMITED SHALLOW SUBSURFACE INVESTIGATION AND SOIL SPOT CLEANUP

Seattle Center Skate Plaza
SEATTLE, WASHINGTON

Submitted To: Environmental Science Associates

5309 Shilshole Avenue NW, Suite 200

Seattle, WA 98107

Attn: Ms. Molly Adolfson

Subject:

LIMITED SHALLOW SUBSURFACE INVESTIGATION AND SOIL SPOT

CLEANUP, SEATTLE CENTER SKATE PLAZA, SEATTLE, WASHINGTON

Shannon & Wilson participated in this project as a subconsultant to Environmental Science Associates. Our scope of services was specified in our proposal provided via email to you on March 18, 2019. Acceptance of the scope of services and notice to proceed was provided by you via email on March 18, 2019.

Sincerely,

SHANNON & WILSON, INC.

David J. Randall

Senior Environmental Scientist

Hydrogeologish 263
SCOTT W. GAULKE

Scott W. Gaulke, PE, LHG

Vice President - Environmental Professional

DJR:SWG/djr

1	Intro	oduction	1
	1.1	Scope of Services – Subsurface Soil Investigation	1
	1.2	Field Activities	1
	1.3	Site Geology	2
	1.4	Analytical Methods	2
	1.5	Analytical Results	3
	1.6	Spot Removal and Soil Disposal	4
	1.7	Conclusions	4
2	Limi	tations	5
Fyda	! a!+a		
	ibits		_
Exn	1D1t 1-	1: Soil Sample Information	2
Tab	les		
Tabl	le 1:	Soil Analytical Results	
Tabl	le 2:	Polyaromatic Hydrocarbon Analytical Results	
Tabl	le 3:	Toxicity Equivalency Factor Adjusted Polycyclic Aromatic Hydrocarbon Concentrations (3 pages)	
Figu	ıres		
Figu	ıre 1:	Vicinity Map	
Figu		Site and Exploration Plan	
	ne ∠.	Site and Exploration Flan	

Appendix A: Laboratory Analytical Results Report

Appendix B: Waste Disposal Information

Important Information

1 INTRODUCTION

Shannon & Wilson has prepared this report, which summarizes the limited shallow subsurface soil investigation and contaminated soil spot cleanup conducted for the proposed Seattle Center Skate Plaza located on the Broad Street Right-of Way between Thomas Street and Taylor Avenue North in Seattle, Washington (project site). The location of the site is shown in Figure 1. A concrete sidewalk bisects the project site into a northeastern area (Area 1) and southwestern area (Area 2). The limited soil sampling was conducted as a screening level effort to identify potential contamination that may be encountered during construction at the subject property and to support the preparation of the State Environmental Policy Act checklist currently being prepared for the project.

1.1 Scope of Services – Subsurface Soil Investigation

The proposed scope of services was initially developed to evaluate the shallow subsurface soil at the subject property that may have been impacted by adjacent sites including former historic gas stations and an auto repair shop. Shannon & Wilson field staff advanced a total of five shallow hand borings across the site, collecting a single grab soil sample from each boring for analytical laboratory testing.

As shown in Figure 2, three of the five hand borings, HB-1, HB-2, and HB-3, were advanced in the northeast corner of the subject property, identified as Area 1, and hand borings HB-4 and HB-5 were advanced in the southwest corner, identified as Area 2. We understand that the proposed site work may likely require up to 2 feet of excavation/soil disturbance across the site. Prior to the start of field activities, a private utility locating company was subcontracted to clear each location for the presence of underground utilities.

Based on the initial analytical results following the Subsurface Soil Investigation, Shannon & Wilson recommended conducting the removal of a small area of polyaromatic hydrocarbons (PAHs) impacted soils and conducting additional confirmation sampling and analytical testing. This additional scope of services was conducted during the Infiltration Pilot Testing conducted on May 18, 2019.

1.2 Field Activities

On March 20, 2019, a Shannon & Wilson field representative advanced a total of five hand borings at the subject property. The hand borings were advanced to total depths of 3.5 to 4.5 feet below ground surface (bgs). Field screening for indications of contamination was conducted during the investigation with the use of visual and olfactory methods and a

photoionization detector (PID). Based on field screening, no indications of contamination were identified/encountered in any of the borings. A single grab soil sample was collected from each boring.

Exhibit 1-1 below presents soil sample information for each boring including boring and sample identification, approximate sample depth, total boring depth, and PID reading.

Exhibit 1-1: Soil Sample Information

		North Area		
Exploration ID	Sample ID	Sample Depth (feet)	Total Boring Depth (feet)	PID (ppm)
HB-1	HB-1:3	2.5 to 3 feet	4.0	0
HB-2	HB-2:3	2.5 to 3 feet	4.5	0
HB-3	HB-3:3.5	3 to 3.5 Feet	3.5*	0

		South Area		
Exploration ID	Sample ID	Sample Depths (Feet)	Total Boring Depth (Feet)	PID (ppm)
HB-4	HB-4:3.5	3 to 3.5 Feet	3.5*	0
HB-5	HB-5:3.5	3 to 3.5 Feet	3.5*	0

NOTE:

Prior to the start of hand boring activities, on March 18, 2019, APS of North Bend, Washington, under subcontract to Shannon & Wilson, conducted a private utility locate to clear each boring location of public utilities.

1.3 Site Geology

In general, the Area 1 hand borings, HB-1, HB-2, and HB-3, identified 6 to 12 inches of topsoil in each of the three borings, underlain by 1.5 to 2 feet of brown to tan fill material with rocks and cobbles. With the exception of boring HB-3, a gray to blue, clayey sand was present beneath the fill to a depth of approximately 4 to 5 feet. Refusal was met in boring HB-3 at 3.5 feet bgs.

The Area 2 hand borings, HB-4 and HB-5, identified 6 to 12 inches of topsoil in each boring, underlain by 2.5 to 3 feet of brown to tan fill material with rocks and cobbles. Refusal was met in each boring at 3.5 feet bgs.

1.4 Analytical Methods

Upon completion of the hand borings, soil samples were submitted to Fremont Analytical in Seattle, Washington, under subcontract to Shannon & Wilson for analytical testing.

^{* =} refusal; ID = identification, PID = photoionization detector; ppm = parts per million

Each soil sample was analyzed using the following methods:

- Total Petroleum Hydrocarbons Gasoline Range Organics using Northwest Total Petroleum Hydrocarbons (NWTPH) Gasoline Extended;
- Total Petroleum Hydrocarbons Diesel and Heavy Oil Range Organics using NWTPH Diesel Extended;
- Volatile Organic Compounds (VOCs) U.S. Environmental Protection Agency (USEPA)
 Method 8260;
- PAHs USEPA Method 8270/625; and
- Resource Conservation Recovery Act (RCRA) 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) – USEPA Method 6020/7471.

1.5 Analytical Results

The analytical results of the sampling indicated that the majority of soil samples did not contain any contaminants of interest at concentrations greater than the Department of Ecology Model Toxic Control Act (MTCA) Method A residential cleanup levels for organic compounds or background levels for metals.

Testing found the following:

- No VOCs were detected in any of the soil samples collected;
- No diesel-range petroleum hydrocarbons were detected in any of the soil samples collected;
- No gasoline-range petroleum hydrocarbons were detected in any of the soil samples collected;
- Heavy oil-range hydrocarbons were only detected in sample HB-5:3.5 at a concentration
 of 117 milligrams per kilograms (mg/kg). The detected concentration is well below the
 MTCA Method A cleanup level of 2,000 mg/kg (Table 1).
- Of the eight RCRA 8 metals, low levels of arsenic, barium, chromium, lead, and selenium were detected in each of the five samples collected. None of the detected concentrations exceeded available MTCA Method A cleanup levels, with the exception of total chromium. Detected total chromium concentrations exceeded the MTCA unrestricted land use cleanup criteria of 19 mg/kg for hexavalent chromium (chrome VI). Based on the location of the site, we have no reason to suspect that chrome VI is present. As a follow-up though, we analyzed the HB-5:3.5 sample, which contained the largest detection of total chromium at 25.9 mg/kg for chrome VI. No chrome VI was detected in the sample, so it is likely the chromium that is present is chrome III and the cleanup level for chrome III is 2,000 mg/kg. Mercury was only detected in sample HB-4:3.5. The detected concentration did not exceed its MTCA Method A cleanup level of 2 mg/kg.

None of the detected metals concentrations exceeded naturally occurring metals background concentrations for the Puget Sound (Table 1).

- PAHs, including carcinogenic polyaromatic hydrocarbons (cPAHs), were only detected in sample HB-2:3. Where available, none of the detected analytes exceeded existing MTCA Method A cleanup levels (Table 2). However, based on the toxicity equivalency factor (TEF) analysis of the individual cPAH constituents, sample HB-2:3 does modestly exceed the cleanup level with a TEF adjusted value of 0.1 mg/kg.
- Table 3 provides the TEF analysis of the individual cPAH constituents. The TEF method is used to adjust the concentrations of individual cPAHs such that they are relative in toxicity to benzo(a)pyrene, which is the most carcinogenic of the PAHs. The individual cPAH concentrations are then added together to evaluate the total toxicity of the soil for comparison with the MTCA cleanup level for benzo(a)pyrene of 0.1 mg/kg.

The analytical test results and regulatory criteria are presented in the Tables 1, 2, and 3. A copy of the laboratory analytical results are presented in Appendix A.

1.6 Spot Removal and Soil Disposal

Based on the analytical results of the HB-2:3 sample, a spot removal was conducted to remove and dispose of the cPAH impacted soil. Under subcontract to Shannon & Wilson on May 18, 2019, the soil at boring location HB-2 was excavated by Clearcreek Contractors to a total depth of 4 feet bgs and placed in to one 55-gallon drum. No indication of further contamination were observed following the removal of the area of contamination.

Two confirmation samples, HB-2:C1 and HB-2:C2, were collected and analyzed for PAHs by Fremont Analytical. No PAHs including cPAHs were detected in either sample indicating that the removal of the contamination was completed. A copy of the laboratory analytical results are presented in Appendix A.

On June 11, 2019, under subcontract to Shannon & Wilson, Waste Management picked up and disposed of the one drum containing the impacted soil. The drum was taken to the Chemical Waste Management Facility in Arlington, Oregon. A copy of the waste manifest is presented in Appendix B.

1.7 Conclusions

Based on the above data we offer the following conclusions and recommendations for the proposed Seattle Center Skate Plaza:

 No VOCs diesel-, or gasoline-range hydrocarbons were detected in any of the samples collected.

- Heavy oil-range hydrocarbons were detected in the sample collected at boring HB-5 at 3.5 feet bgs. The detected concentration was well below the MTCA Method A cleanup level.
- Metals concentrations present in the soil samples appear to be within natural regional metals background concentrations for the Puget Sound.
- PAHs including cPAHs were detected in the sample collected from boring HB-2 at 3 feet bgs. Based on the toxicity equivalency factor (TEF) analysis, the detected cPAH concentration modestly exceeds the MTCA Method A cleanup level for benzo(a)pyrene of 0.1 mg/kg. A spot removal was conducted at the HB-2 boring location. The impacted PAH and cPAH soils were excavated and disposed of at an off-site facility permitted to accept the material. Confirmation sampling was performed following the removal of the documented contaminated soil. The analytical results of the confirmation sampling indicate that all of the PAH and cPAH soils were removed. Based on the sampling there is no PAH or cPAH contamination on site.

2 LIMITATIONS

Shannon & Wilson has prepared this report in a professional manner, using that level of skill and care normally exercised for similar projects under similar conditions by reputable and competent environmental consultants currently practicing in the area. Shannon & Wilson is not responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time the report was prepared. We also note that the facts and conditions referenced in this report may change over time, and that the conclusions and recommendations set forth here are applicable to the facts and conditions as described only at the time of this report. We believe that the conclusions stated here are factual, but no guarantee is made or implied.

This report was prepared for the exclusive use of Environmental Science Associates and your respective representatives and in no way guarantees that any agency or its staff will reach the same conclusions as Shannon & Wilson. Shannon & Wilson has prepared the enclosed, "Important Information About Your Environmental Site Assessment/Evaluation Report," to help you and others in understanding our reports.

Table 1 - Soil Analytical Results

	Sample		Total Petr	oluem Hy	drocarbons				RCI	RA 8 - Metals Hexavalent				
Boring ID	Number	Depth (feet)	Gasoline	Diesel	Heavy Oil	Arsenic	Barium	Cadmium	Chromium	Chromium	Lead	Mercury	Selenium	Silver
Soil Results (mg/kg)													
HB-1	HB-1:3	2.5-3	<7.21	<22.1	<55.2	1.67	41.5	<0.176	9.28		2.56	<0.268	0.827	<0.0882
HB-2	HB-2:3	2.5-3	<3.79	<21.8	<54.5	3.09	91.6	<0.175	23.3		6.56	<0.261	1.17	<0.0873
HB-3	HB-3:3.5	3-3.5	<1.0	<3.63	<55.9	2.02	54.4	<0.187	22		2.72	<0.268	0.912	<0.0933
HB-4	HB-4:3.5	3-3.5	<7.46	<21.6	<54.1	4.11	70.2	<0.178	25.5		10.9	1.19	1.22	<0.0890
HB-5	HB-5:3.5	3-3.5	<6.27	<23.4	117	4.95	88.7	<0.189	25.9	< 0.623	14.5	<0.287	1.41	<0.0945
MTCA N	lethod A (uni	estricted use)	30/100	2,000	2,000	20	NA	2	19/2,000	19	250	2	NA	NA
	Puget Soun	d Background	NA	NA	NA	7	300-1,000	48	48	48	24	0.07	0.78	0.61

NOTES:

Bold indicates detected concentration.

102998-001 102998-001-R2-T1-T2-T3 - 6/11/2019/wp/lkn

J = analyte was detected. However, the analytical concentraiton is an estimated value, which is between the method detection level and the practical quantitation limit.

^{-- =} not analyzed; < = not detected above indicated laboratory reporting limit; ID = identification; mg/kg = milligrams per kilogram; MTCA = Model Toxics Control Act; NA = not applicable; RCRA = Resource Conservation and Recovery Act

Table 2 - Polyaromatic Hydrocarbon Analytical Results

_	<u>-</u>								
	Boring/Well Number:	HB-1	HB-2	HB-2	HB-2	HB-3	HB-4	HB-5	MTCA Method
	Sample Number:	HB-1:3	HB-2:3	HB-2:C1	HB-2:C2	HB-3:3.5	HB-4:3.5	HB-5:3.5	A CUL for
	Sample Depth:	2.5-3	2.5-3	4	4	3-3.5	3-3.5	3-3.5	Unrestricted
	Sample Date:	3/20/2019	3/20/2019	5/16/2019	5/16/2019	3/20/2019	3/20/2019	3/20/2019	Land Use
Polycyclic Aromatic Hy	drocarbons (mg/kg)								_
Naphthalene		< 0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	5
2-Methylnaphthalene		<0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	5
1-Methylnaphthalene		<0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	5
Acenaphthylene		<0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Acenaphthene		<0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Fluorene		<0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Phenanthrene		< 0.0391	0.176	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Anthracene		< 0.0391	0.0594	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Fluoranthene		<0.0391	0.316	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Pyrene		< 0.0391	0.217	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Benzo[g,h,i]perylene		<0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
Carcinogenic Polycyclic	: Aromatic Hydrocarbon	ıs (cPAHs) (mg/k	g)						
benzo(a)pyrene		<0.0391	0.0903	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
benzo(a)anthracene		< 0.0391	0.0929	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
benzo(b)fluoranthene		< 0.0391	0.0532	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
benzo(k)fluoranthene		< 0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
chrysene		< 0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	0.1
dibenzo[a,h]anthracene		< 0.0391	< 0.042	< 0.045	< 0.047	< 0.0459	< 0.0465	< 0.0472	NE
indeno[1,2,3-cd]pyrene		<0.0391	<0.042	<0.045	<0.047	<0.0459	<0.0465	<0.0472	NE
Total cPAH TEQ (See Ta	ble 3)	0.04	0.1	0.03	0.04	0.03	0.04	0.04	0.1

NOTES:

Bold text indicates detected analyte.

Shaded text indicates concentrations exceeds cleanup criterion.

< = not detected above indicated laboratory testing; CUL = cleanup level; mg/kg = milligrams per kilogram; MTCA = Model Toxics Control Act; NE = not established; TEQ = toxic equivalent concentration

102998-001 102998-001-R2-T1-T2-T3 - 6/11/2019/wp/lkn

Table 3 - Toxicity Equivalency Factor Adjusted Polycyclic Aromatic Hydrocarbon Concentrations

	Total Result	cPAH TEQ Calculation for San Method Detection Limit		Adjusted Concentration ¹
Analyte	(mg/kg)	(mg/kg)	Toxicity Equivalency Factor	
benzo(a)pyrene	ND	0.0465	1	0.02325
benzo(a)anthracene	ND	0.0465	0.1	0.002325
benzo(b)fluoranthene	ND	0.0465	0.1	0.002325
benzo(k)fluoranthene	ND	0.0465	0.1	0.002325
chrysene	ND	0.0465	0.01	0.0002325
dibenzo[a,h]anthracene	ND	0.0465	0.1	0.002325
indeno[1,2,3-cd]pyrene	ND	0.0465	0.1	0.002325
Total cPAH TEQ ²			<	0.0351
MTCA Method A Cleanup Level	for Unrestricted Land Us	se se		0.10

Analyte	Result (mg/kg)	cPAH TEQ Calculation for Sam Method Detection Limit (mg/kg)	Toxicity Equivalency Factor	Adjusted Concentration ¹ (mg/kg)
benzo(a)pyrene	0.0903	0.042	1	0.0903
benzo(a)anthracene	0.0929	0.042	0.1	0.00929
benzo(b)fluoranthene	0.0532	0.042	0.1	0.00532
benzo(k)fluoranthene	ND	0.042	0.1	0.0021
chrysene	ND	0.042	0.01	0.00021
dibenzo[a,h]anthracene	ND	0.042	0.1	0.0021
indeno[1,2,3-cd]pyrene	ND	0.042	0.1	0.0021
Total cPAH TEQ ²				0.1
MTCA Method A Cleanup Level	for Unrestricted Land U	se		0.10

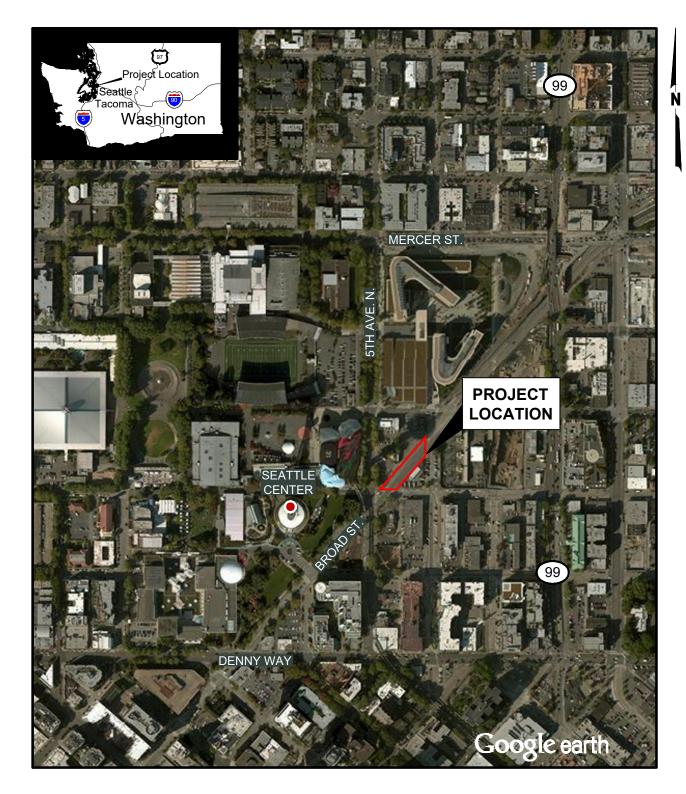
	Total	cPAH TEQ Calculation for Sam	ple HB-3	
Analyte	Result (mg/kg)	Method Detection Limit (mg/kg)	Toxicity Equivalency Factor	Adjusted Concentration ¹ (mg/kg)
			Toxicity Equivalency Factor	
benzo(a)pyrene	ND	0.0459	1	0.02295
benzo(a)anthracene	ND	0.0459	0.1	0.002295
benzo(b)fluoranthene	ND	0.0459	0.1	0.002295
benzo(k)fluoranthene	ND	0.0459	0.1	0.002295
chrysene	ND	0.0459	0.01	0.0002295
dibenzo[a,h]anthracene	ND	0.0459	0.1	0.002295
indeno[1,2,3-cd]pyrene	ND	0.0459	0.1	0.002295
Total cPAH TEQ ²			<	0.0347
MTCA Method A Cleanup Level for	or Unrestricted Land Us	6e		0.10

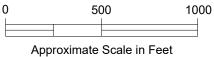
	Total Result	cPAH TEQ Calculation for Sam Method Detection Limit	ple HB-4	Adjusted Concentration ¹
Analyte	(mg/kg)	(mg/kg)	Toxicity Equivalency Factor	(mg/kg)
benzo(a)pyrene	ND	0.0465	1	0.02325
benzo(a)anthracene	ND	0.0465	0.1	0.002325
benzo(b)fluoranthene	ND	0.0465	0.1	0.002325
benzo(k)fluoranthene	ND	0.0465	0.1	0.002325
chrysene	ND	0.0465	0.01	0.0002325
dibenzo[a,h]anthracene	ND	0.0465	0.1	0.002325
indeno[1,2,3-cd]pyrene	ND	0.0465	0.1	0.002325
Total cPAH TEQ ²			<	0.0351
MTCA Method A Cleanup Level	for Unrestricted Land Us	se		0.10

Analyte	Total Result (mg/kg)	cPAH TEQ Calculation for Sam Method Detection Limit (mg/kg)	ple HB-5 Toxicity Equivalency Factor	Adjusted Concentration (mg/kg)
benzo(a)pyrene	ND	0.0472	1	0.0236
benzo(a)anthracene	ND	0.0472	0.1	0.00236
benzo(b)fluoranthene	ND	0.0472	0.1	0.00236
benzo(k)fluoranthene	ND	0.0472	0.1	0.00236
chrysene	ND	0.0472	0.01	0.000236
dibenzo[a,h]anthracene	ND	0.0472	0.1	0.00236
indeno[1,2,3-cd]pyrene	ND	0.0472	0.1	0.00236
Total cPAH TEQ ²			<	0.0356
MTCA Method A Cleanup Level	for Unrestricted Land U	se		0.10

	Result	PAH TEQ Calculation for Sampl Method Detection Limit		Adjusted Concentration'
Analyte	(mg/kg)	(mg/kg)	Toxicity Equivalency Factor	(mg/kg)
benzo(a)pyrene	ND	0.0453	1	0.02265
benzo(a)anthracene	ND	0.0453	0.1	0.002265
benzo(b)fluoranthene	ND	0.0453	0.1	0.002265
benzo(k)fluoranthene	ND	0.0453	0.1	0.002265
chrysene	ND	0.0453	0.01	0.0002265
dibenzo[a,h]anthracene	ND	0.0453	0.1	0.002265
indeno[1,2,3-cd]pyrene	ND	0.0453	0.1	0.002265
Total cPAH TEQ ²			<	0.0342
MTCA Method A Cleanup Level	for Unrestricted Land Us	Se 9		0.10

Analyte	Total cF Result (mg/kg)	PAH TEQ Calculation for Sampl Method Detection Limit (mg/kg)	e HB-2:C2 Toxicity Equivalency Factor	Adjusted Concentration' (mg/kg)
benzo(a)pyrene	ND	0.0472	1	0.0236
benzo(a)anthracene	ND	0.0472	0.1	0.00236
benzo(b)fluoranthene	ND	0.0472	0.1	0.00236
benzo(k)fluoranthene	ND	0.0472	0.1	0.00236
chrysene	ND	0.0472	0.01	0.000236
dibenzo[a,h]anthracene	ND	0.0472	0.1	0.00236
indeno[1,2,3-cd]pyrene	ND	0.0472	0.1	0.00236
Total cPAH TEQ ²			<	0.0356
MTCA Method A Cleanup Level	for Unrestricted Land Us	Se		0.10


NOTES:


¹ For detected compounds, calculated as the detected concentration multiplied by the compound's TEF. For compounds that are ND, calculated as 1/2 of the MDL multiplied by the compound's TEF.

² Sum of the TEF adjusted concentration for each cPAH.

< = ND = not detected above the MDL; cPAH = carcinogenic polycyclic aromatic hydrocarbon; MDL = Method Detection Limit; mg/kg = milligrams per kilogram; MTCA

⁼ Model Toxics Control Act; TEF = toxicity equivalency factor; TEQ = toxic equivalent concentration

NOTE

Map adapted from aerial imagery provided by Google Earth Pro.

Seattle Center Skate Plaza Broad Street Right-of-Way Seattle, Washington

VICINITY MAP

June 2019

102998-001

FIG. 1

80

FIG. 2

Login: AWP Date: 06-05-2019

Appendix A

Laboratory Analytical Results Report

CONTENTS

- Fremont Analytical Laboratory Report 1903300
- Fremont Analytical Laboratory Report 1905255

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson

Dave Randall 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Seattle Center Skate Plaza Work Order Number: 1903300

May 08, 2019

Attention Dave Randall:

Fremont Analytical, Inc. received 5 sample(s) on 3/20/2019 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Hexavalent Chromium by EPA Method 7196

Mercury by EPA Method 7471

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

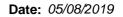
Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Seattle Center Skate Plaza

Work Order: 1903300

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1903300-001	HB-1:3	03/20/2019 8:30 AM	03/20/2019 1:08 PM
1903300-002	HB-4:3.5	03/20/2019 9:00 AM	03/20/2019 1:08 PM
1903300-003	HB-5:3.5	03/20/2019 10:00 AM	03/20/2019 1:08 PM
1903300-004	HB-3:3.5	03/20/2019 11:00 AM	03/20/2019 1:08 PM
1903300-005	HB-2:3	03/20/2019 12:00 PM	03/20/2019 1:08 PM

Case Narrative

WO#: **1903300** Date: **5/8/2019**

CLIENT: Shannon & Wilson

Project: Seattle Center Skate Plaza

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Rev1 - Additional analysis for hexavalent chromium for 003. 5/8/2019

Qualifiers & Acronyms

WO#: 1903300

Date Reported: 5/8/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 8:30:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-001 **Matrix:** Soil

Client Sample ID: HB-1:3

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID:	23918 Analyst: DW
Diesel (Fuel Oil)	ND	22.1		mg/Kg-dry	1	3/22/2019 5:53:14 AM
Heavy Oil	ND	55.2		mg/Kg-dry	1	3/22/2019 8:43:38 PM
Surr: 2-Fluorobiphenyl	102	50 - 150		%Rec	1	3/22/2019 5:53:14 AM
Surr: o-Terphenyl	103	50 - 150		%Rec	1	3/22/2019 5:53:14 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID:	23919 Analyst: IH
Naphthalene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
2-Methylnaphthalene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
1-Methylnaphthalene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Acenaphthylene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Acenaphthene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Fluorene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Phenanthrene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Anthracene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Fluoranthene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Pyrene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Benz(a)anthracene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Chrysene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Benzo(b)fluoranthene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Benzo(k)fluoranthene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Benzo(a)pyrene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Indeno(1,2,3-cd)pyrene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Dibenz(a,h)anthracene	ND	39.1		μg/Kg-dry	1	3/22/2019 3:59:33 AM
Benzo(g,h,i)perylene	ND	39.1	Q	μg/Kg-dry	1	3/22/2019 3:59:33 AM
Surr: 2-Fluorobiphenyl	40.1	19.4 - 157		%Rec	1	3/22/2019 3:59:33 AM
Surr: Terphenyl-d14 (surr)	46.5	31.5 - 173		%Rec	1	3/22/2019 3:59:33 AM
NOTES:						
Q - Indicates an analyte with a continu	uing calibration that o	does not meet e	stablished	acceptance c	riteria	ı
Gasoline by NWTPH-Gx				Batch	n ID:	23915 Analyst: CR
Gasoline	ND	7.21		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Surr: Toluene-d8	98.5	65 - 135		%Rec	1	3/21/2019 9:59:42 PM
Surr: 4-Bromofluorobenzene	90.8	65 - 135		%Rec	1	3/21/2019 9:59:42 PM
Volatile Organic Compounds I	oy EPA Method	8260C		Batch	n ID:	23915 Analyst: CR

ND

0.0288

mg/Kg-dry

Dichlorodifluoromethane (CFC-12)

3/21/2019 9:59:42 PM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 8:30:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-001 **Matrix:** Soil

Client Sample ID: HB-1:3

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	n ID: 23	915 Analyst: CR
Chloromethane	ND	0.0721	Q	mg/Kg-dry	1	3/21/2019 9:59:42 PM
Vinyl chloride	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Bromomethane	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Trichlorofluoromethane (CFC-11)	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Chloroethane	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,1-Dichloroethene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Methylene chloride	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
trans-1,2-Dichloroethene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Methyl tert-butyl ether (MTBE)	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,1-Dichloroethane	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
2,2-Dichloropropane	ND	0.144	Q	mg/Kg-dry	1	3/21/2019 9:59:42 PM
cis-1,2-Dichloroethene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Chloroform	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,1,1-Trichloroethane (TCA)	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,1-Dichloropropene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Carbon tetrachloride	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2-Dichloroethane (EDC)	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Benzene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Trichloroethene (TCE)	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2-Dichloropropane	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Bromodichloromethane	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Dibromomethane	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
cis-1,3-Dichloropropene	ND	0.0288	Q	mg/Kg-dry	1	3/21/2019 9:59:42 PM
Toluene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
trans-1,3-Dichloropropylene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,1,2-Trichloroethane	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,3-Dichloropropane	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Tetrachloroethene (PCE)	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Dibromochloromethane	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2-Dibromoethane (EDB)	ND	0.00721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Chlorobenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,1,1,2-Tetrachloroethane	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Ethylbenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
m,p-Xylene	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
o-Xylene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Styrene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Isopropylbenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Bromoform	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,1,2,2-Tetrachloroethane	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 8:30:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-001 **Matrix:** Soil

Client Sample ID: HB-1:3

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch	1D: 23	3915 Analyst: CR
n-Propylbenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Bromobenzene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,3,5-Trimethylbenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
2-Chlorotoluene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
4-Chlorotoluene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
tert-Butylbenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2,3-Trichloropropane	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2,4-Trichlorobenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
sec-Butylbenzene	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
4-Isopropyltoluene	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,3-Dichlorobenzene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,4-Dichlorobenzene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
n-Butylbenzene	ND	0.0360		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2-Dichlorobenzene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2-Dibromo-3-chloropropane	ND	0.721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2,4-Trimethylbenzene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Hexachlorobutadiene	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Naphthalene	ND	0.0721		mg/Kg-dry	1	3/21/2019 9:59:42 PM
1,2,3-Trichlorobenzene	ND	0.0288		mg/Kg-dry	1	3/21/2019 9:59:42 PM
Surr: Dibromofluoromethane	95.5	56.5 - 129		%Rec	1	3/21/2019 9:59:42 PM
Surr: Toluene-d8	104	64.5 - 151		%Rec	1	3/21/2019 9:59:42 PM
Surr: 1-Bromo-4-fluorobenzene NOTES:	94.6	54.8 - 168		%Rec	1	3/21/2019 9:59:42 PM

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Mercury by EPA Method 7471			Batch ID:	23965 Analyst: WF
Mercury	ND	0.268	mg/Kg-dry 1	3/27/2019 11:35:29 AM
Total Metals by EPA Method 6020			Batch ID:	23912 Analyst: WC
Arsenic	1.67	0.221	mg/Kg-dry 1	3/21/2019 2:53:48 PM
Barium	41.5	0.441	mg/Kg-dry 1	3/21/2019 2:53:48 PM
Cadmium	ND	0.176	mg/Kg-dry 1	3/21/2019 2:53:48 PM
Chromium	9.28	0.0882	mg/Kg-dry 1	3/21/2019 2:53:48 PM
Lead	2.56	0.176	mg/Kg-dry 1	3/21/2019 2:53:48 PM
Selenium	0.827	0.441	mg/Kg-dry 1	3/21/2019 2:53:48 PM
Silver	ND	0.0882	mg/Kg-dry 1	3/21/2019 2:53:48 PM

Batch ID: R50191

Work Order: 1903300 Date Reported: 5/8/2019

Analyst: CJ

Shannon & Wilson Collection Date: 3/20/2019 8:30:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-001 Matrix: Soil

Client Sample ID: HB-1:3

Analyses Result RL Qual **Units** DF **Date Analyzed**

Sample Moisture (Percent Moisture)

Percent Moisture 12.1 wt% 3/21/2019 8:14:12 AM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 9:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-002 **Matrix:** Soil

Client Sample ID: HB-4:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	ı ID:	23918 Analyst: DW
Diesel (Fuel Oil)	ND	21.6		mg/Kg-dry	1	3/22/2019 6:23:00 AM
Heavy Oil	ND	54.1		mg/Kg-dry	1	3/22/2019 9:13:34 PM
Surr: 2-Fluorobiphenyl	126	50 - 150		%Rec	1	3/22/2019 6:23:00 AM
Surr: o-Terphenyl	126	50 - 150		%Rec	1	3/22/2019 6:23:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	ı ID:	23919 Analyst: IH
Naphthalene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
2-Methylnaphthalene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
1-Methylnaphthalene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Acenaphthylene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Acenaphthene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Fluorene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Phenanthrene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Anthracene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Fluoranthene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Pyrene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Benz(a)anthracene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Chrysene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Benzo(b)fluoranthene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Benzo(k)fluoranthene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Benzo(a)pyrene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Indeno(1,2,3-cd)pyrene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Dibenz(a,h)anthracene	ND	46.5		μg/Kg-dry	1	3/22/2019 4:20:13 AM
Benzo(g,h,i)perylene	ND	46.5	Q	μg/Kg-dry	1	3/22/2019 4:20:13 AM
Surr: 2-Fluorobiphenyl	54.1	19.4 - 157		%Rec	1	3/22/2019 4:20:13 AM
Surr: Terphenyl-d14 (surr)	53.7	31.5 - 173		%Rec	1	3/22/2019 4:20:13 AM
NOTES:						
Q - Indicates an analyte with a continu	uing calibration that o	does not meet e	stablished	acceptance ci	riteria	I
Gasoline by NWTPH-Gx				Batch	ı ID:	23915 Analyst: CR
Gasoline	ND	7.46		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Surr: Toluene-d8	97.5	65 - 135		%Rec	1	3/21/2019 10:59:56 PM
Surr: 4-Bromofluorobenzene	88.5	65 - 135		%Rec	1	3/21/2019 10:59:56 PM
Volatile Organic Compounds I	by EPA Method	8260C		Batch	ı ID:	23915 Analyst: CR

ND

0.0299

mg/Kg-dry 1

Dichlorodifluoromethane (CFC-12)

3/21/2019 10:59:56 PM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 9:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-002 **Matrix:** Soil

Client Sample ID: HB-4:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	n ID: 23	915 Analyst: CR
Chloromethane	ND	0.0746	Q	mg/Kg-dry	1	3/21/2019 10:59:56 PM
Vinyl chloride	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Bromomethane	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Trichlorofluoromethane (CFC-11)	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Chloroethane	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,1-Dichloroethene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Methylene chloride	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
trans-1,2-Dichloroethene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Methyl tert-butyl ether (MTBE)	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,1-Dichloroethane	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
2,2-Dichloropropane	ND	0.149	Q	mg/Kg-dry	1	3/21/2019 10:59:56 PM
cis-1,2-Dichloroethene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Chloroform	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,1,1-Trichloroethane (TCA)	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,1-Dichloropropene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Carbon tetrachloride	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2-Dichloroethane (EDC)	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Benzene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Trichloroethene (TCE)	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2-Dichloropropane	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Bromodichloromethane	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Dibromomethane	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
cis-1,3-Dichloropropene	ND	0.0299	Q	mg/Kg-dry	1	3/21/2019 10:59:56 PM
Toluene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
trans-1,3-Dichloropropylene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,1,2-Trichloroethane	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,3-Dichloropropane	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Tetrachloroethene (PCE)	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Dibromochloromethane	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2-Dibromoethane (EDB)	ND	0.00746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Chlorobenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,1,1,2-Tetrachloroethane	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Ethylbenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
m,p-Xylene	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
o-Xylene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Styrene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Isopropylbenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Bromoform	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,1,2,2-Tetrachloroethane	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 9:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-002 **Matrix:** Soil

Client Sample ID: HB-4:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch	ID:	23915 Analyst: CR
n-Propylbenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Bromobenzene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,3,5-Trimethylbenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
2-Chlorotoluene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
4-Chlorotoluene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
tert-Butylbenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2,3-Trichloropropane	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2,4-Trichlorobenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
sec-Butylbenzene	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
4-Isopropyltoluene	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,3-Dichlorobenzene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,4-Dichlorobenzene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
n-Butylbenzene	ND	0.0373		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2-Dichlorobenzene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2-Dibromo-3-chloropropane	ND	0.746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2,4-Trimethylbenzene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Hexachlorobutadiene	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Naphthalene	ND	0.0746		mg/Kg-dry	1	3/21/2019 10:59:56 PM
1,2,3-Trichlorobenzene	ND	0.0299		mg/Kg-dry	1	3/21/2019 10:59:56 PM
Surr: Dibromofluoromethane	93.0	56.5 - 129		%Rec	1	3/21/2019 10:59:56 PM
Surr: Toluene-d8	101	64.5 - 151		%Rec	1	3/21/2019 10:59:56 PM
Surr: 1-Bromo-4-fluorobenzene	92.1	54.8 - 168		%Rec	1	3/21/2019 10:59:56 PM
NOTES:						

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Mercury by EPA Method 7471				Batch	ID:	23965 Analyst: WF
Mercury	1.19	1.43	JD	mg/Kg-dry	5	3/27/2019 11:42:59 AM
Total Metals by EPA Method 6020				Batch	ID:	23912 Analyst: WC
Arsenic	4.11	0.222		mg/Kg-dry	1	3/21/2019 2:58:22 PM
Barium	70.2	0.445		mg/Kg-dry	1	3/21/2019 2:58:22 PM
Cadmium	ND	0.178		mg/Kg-dry	1	3/21/2019 2:58:22 PM
Chromium	25.5	0.0890		mg/Kg-dry	1	3/21/2019 2:58:22 PM
Lead	10.9	0.178		mg/Kg-dry	1	3/21/2019 2:58:22 PM
Selenium	1.22	0.445		mg/Kg-dry	1	3/21/2019 2:58:22 PM
Silver	ND	0.0890		mg/Kg-dry	1	3/21/2019 2:58:22 PM

Batch ID: R50191

Work Order: 1903300

Date Reported: 5/8/2019

Analyst: CJ

Client: Shannon & Wilson Collection Date: 3/20/2019 9:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-002 **Matrix:** Soil

Client Sample ID: HB-4:3.5

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Percent Moisture 17.4 wt% 1 3/21/2019 8:14:12 AM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 10:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-003 **Matrix:** Soil

Client Sample ID: HB-5:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	ı ID:	23918 Analyst: DW
Diesel (Fuel Oil)	ND	23.4		mg/Kg-dry	1	3/22/2019 6:52:52 AM
Heavy Oil	117	58.6		mg/Kg-dry	1	3/22/2019 9:43:30 PM
Surr: 2-Fluorobiphenyl	101	50 - 150		%Rec	1	3/22/2019 6:52:52 AM
Surr: o-Terphenyl	102	50 - 150		%Rec	1	3/22/2019 6:52:52 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	<u>3270 (SIM)</u>		Batch	n ID:	23919 Analyst: IH
Naphthalene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
2-Methylnaphthalene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
1-Methylnaphthalene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Acenaphthylene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Acenaphthene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Fluorene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Phenanthrene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Anthracene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Fluoranthene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Pyrene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Benz(a)anthracene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Chrysene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Benzo(b)fluoranthene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Benzo(k)fluoranthene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Benzo(a)pyrene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Indeno(1,2,3-cd)pyrene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Dibenz(a,h)anthracene	ND	47.2		μg/Kg-dry	1	3/22/2019 4:40:52 AM
Benzo(g,h,i)perylene	ND	47.2	Q	μg/Kg-dry	1	3/22/2019 4:40:52 AM
Surr: 2-Fluorobiphenyl	52.8	19.4 - 157		%Rec	1	3/22/2019 4:40:52 AM
Surr: Terphenyl-d14 (surr)	55.0	31.5 - 173		%Rec	1	3/22/2019 4:40:52 AM
NOTES:						
Q - Indicates an analyte with a continu	uing calibration that o	does not meet e	stablished	acceptance c	riteria	
Gasoline by NWTPH-Gx				Batch	ı ID:	23915 Analyst: CR
Gasoline	ND	6.27		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Surr: Toluene-d8	97.0	65 - 135		%Rec	1	3/21/2019 11:30:02 PM
Surr: 4-Bromofluorobenzene	92.4	65 - 135		%Rec	1	3/21/2019 11:30:02 PM
Volatile Organic Compounds I	oy EPA Method	8260C		Batch	n ID:	23915 Analyst: CR

ND

0.0251

mg/Kg-dry

Dichlorodifluoromethane (CFC-12)

3/21/2019 11:30:02 PM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 10:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-003 **Matrix:** Soil

Client Sample ID: HB-5:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	/ EPA Method 8	3260C		Batch	n ID: 23	3915 Analyst: CR
Chloromethane	ND	0.0627	Q	mg/Kg-dry	1	3/21/2019 11:30:02 PM
Vinyl chloride	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Bromomethane	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Trichlorofluoromethane (CFC-11)	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Chloroethane	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,1-Dichloroethene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Methylene chloride	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
trans-1,2-Dichloroethene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Methyl tert-butyl ether (MTBE)	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,1-Dichloroethane	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
2,2-Dichloropropane	ND	0.125	Q	mg/Kg-dry	1	3/21/2019 11:30:02 PM
cis-1,2-Dichloroethene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Chloroform	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,1,1-Trichloroethane (TCA)	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,1-Dichloropropene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Carbon tetrachloride	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2-Dichloroethane (EDC)	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Benzene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Trichloroethene (TCE)	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2-Dichloropropane	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Bromodichloromethane	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Dibromomethane	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
cis-1,3-Dichloropropene	ND	0.0251	Q	mg/Kg-dry	1	3/21/2019 11:30:02 PM
Toluene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
trans-1,3-Dichloropropylene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,1,2-Trichloroethane	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,3-Dichloropropane	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Tetrachloroethene (PCE)	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Dibromochloromethane	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2-Dibromoethane (EDB)	ND	0.00627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Chlorobenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,1,1,2-Tetrachloroethane	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Ethylbenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
m,p-Xylene	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
o-Xylene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Styrene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Isopropylbenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Bromoform	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,1,2,2-Tetrachloroethane	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM

Work Order: 1903300 Date Reported: 5/8/2019

Collection Date: 3/20/2019 10:00:00 AM Client: Shannon & Wilson

Project: Seattle Center Skate Plaza

Lab ID: 1903300-003 Matrix: Soil

Client Sample ID: HB-5:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch	n ID: 23	3915 Analyst: CR
n-Propylbenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Bromobenzene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,3,5-Trimethylbenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
2-Chlorotoluene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
4-Chlorotoluene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
tert-Butylbenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2,3-Trichloropropane	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2,4-Trichlorobenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
sec-Butylbenzene	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
4-Isopropyltoluene	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,3-Dichlorobenzene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,4-Dichlorobenzene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
n-Butylbenzene	ND	0.0313		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2-Dichlorobenzene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2-Dibromo-3-chloropropane	ND	0.627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2,4-Trimethylbenzene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Hexachlorobutadiene	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Naphthalene	ND	0.0627		mg/Kg-dry	1	3/21/2019 11:30:02 PM
1,2,3-Trichlorobenzene	ND	0.0251		mg/Kg-dry	1	3/21/2019 11:30:02 PM
Surr: Dibromofluoromethane	96.2	56.5 - 129		%Rec	1	3/21/2019 11:30:02 PM
Surr: Toluene-d8	103	64.5 - 151		%Rec	1	3/21/2019 11:30:02 PM
Surr: 1-Bromo-4-fluorobenzene	95.4	54.8 - 168		%Rec	1	3/21/2019 11:30:02 PM
NOTES:						

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Mercury by EPA Method 7471			Batch ID:	23965 Analyst: WF
Mercury	ND	0.287	mg/Kg-dry 1	3/27/2019 11:44:34 AM
Total Metals by EPA Method 6020			Batch ID:	23912 Analyst: WC
Arsenic	4.95	0.236	mg/Kg-dry 1	3/21/2019 3:02:56 PM
Barium	88.7	0.473	mg/Kg-dry 1	3/21/2019 3:02:56 PM
Cadmium	ND	0.189	mg/Kg-dry 1	3/21/2019 3:02:56 PM
Chromium	25.9	0.0945	mg/Kg-dry 1	3/21/2019 3:02:56 PM
Lead	14.2	0.189	mg/Kg-dry 1	3/21/2019 3:02:56 PM
Selenium	1.41	0.473	mg/Kg-dry 1	3/21/2019 3:02:56 PM
Silver	ND	0.0945	mg/Kg-dry 1	3/21/2019 3:02:56 PM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 10:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-003 **Matrix:** Soil

Client Sample ID: HB-5:3.5

Result RL Qual **Units** DF **Date Analyzed Analyses** Analyst: CJ **Sample Moisture (Percent Moisture)** Batch ID: R50191 Percent Moisture 19.2 wt% 3/21/2019 8:14:12 AM Batch ID: 24434 Analyst: WF **Hexavalent Chromium by EPA Method 7196** Chromium, Hexavalent ND 0.623 5/7/2019 4:55:00 PM mg/Kg-dry

Revision v1

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 11:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-004 **Matrix:** Soil

Client Sample ID: HB-3:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	23918 Analyst: DW
Diesel (Fuel Oil)	ND	22.3		mg/Kg-dry	1	3/22/2019 7:22:42 AM
Heavy Oil	ND	55.9		mg/Kg-dry	1	3/22/2019 7:22:42 AM
Surr: 2-Fluorobiphenyl	112	50 - 150		%Rec	1	3/22/2019 7:22:42 AM
Surr: o-Terphenyl	112	50 - 150		%Rec	1	3/22/2019 7:22:42 AM
Polyaromatic Hydrocarbons by	/ EPA Method 8	3270 (SIM)		Batch	ı ID:	23919 Analyst: IH
Naphthalene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
2-Methylnaphthalene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
1-Methylnaphthalene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Acenaphthylene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Acenaphthene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Fluorene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Phenanthrene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Anthracene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Fluoranthene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Pyrene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Benz(a)anthracene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Chrysene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Benzo(b)fluoranthene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Benzo(k)fluoranthene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Benzo(a)pyrene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Indeno(1,2,3-cd)pyrene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Dibenz(a,h)anthracene	ND	45.9		μg/Kg-dry	1	3/22/2019 5:01:35 AM
Benzo(g,h,i)perylene	ND	45.9	Q	μg/Kg-dry	1	3/22/2019 5:01:35 AM
Surr: 2-Fluorobiphenyl	50.0	19.4 - 157		%Rec	1	3/22/2019 5:01:35 AM
Surr: Terphenyl-d14 (surr)	53.1	31.5 - 173		%Rec	1	3/22/2019 5:01:35 AM
NOTES:						
Q - Indicates an analyte with a continu	ing calibration that o	does not meet e	stablished	acceptance c	riteria	l
Gasoline by NWTPH-Gx				Batch	n ID:	23915 Analyst: CR
Gasoline	ND	3.63		mg/Kg-dry	1	3/22/2019 12:00:10 AM
Surr: Toluene-d8	97.8	65 - 135		%Rec	1	3/22/2019 12:00:10 AM
Surr: 4-Bromofluorobenzene	88.9	65 - 135		%Rec	1	3/22/2019 12:00:10 AM
Volatile Organic Compounds b	y EPA Method	8260C		Batch	n ID:	23915 Analyst: CR

ND

0.0145

mg/Kg-dry

Dichlorodifluoromethane (CFC-12)

3/22/2019 12:00:10 AM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 11:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-004 **Matrix:** Soil

Client Sample ID: HB-3:3.5

Analyses Result RL Qual **Units** DF **Date Analyzed** Batch ID: 23915 Analyst: CR Volatile Organic Compounds by EPA Method 8260C Chloromethane ND 0.0363 mg/Kg-dry 3/22/2019 12:00:10 AM 1 Vinyl chloride ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM **Bromomethane** ND 0.0363 mg/Kg-dry 1 3/22/2019 12:00:10 AM Trichlorofluoromethane (CFC-11) ND 0.0145 3/22/2019 12:00:10 AM mg/Kg-dry ND Chloroethane 0.0363 3/22/2019 12:00:10 AM mg/Kg-dry 1 3/22/2019 12:00:10 AM ND 1,1-Dichloroethene 0.0145 mg/Kg-dry 1 ND Methylene chloride 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM trans-1.2-Dichloroethene ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM Methyl tert-butyl ether (MTBE) ND 0.0363 mg/Kg-dry 1 3/22/2019 12:00:10 AM 1,1-Dichloroethane ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM 2,2-Dichloropropane ND 0.0725 Q mg/Kg-dry 1 3/22/2019 12:00:10 AM cis-1,2-Dichloroethene ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM Chloroform ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM 1,1,1-Trichloroethane (TCA) ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM 1,1-Dichloropropene ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM ND Carbon tetrachloride 1 3/22/2019 12:00:10 AM 0.0181 mg/Kg-dry 1,2-Dichloroethane (EDC) ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM ND Benzene 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM Trichloroethene (TCE) ND 0.0145 1 3/22/2019 12:00:10 AM mg/Kg-dry 1,2-Dichloropropane ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM Bromodichloromethane ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM Dibromomethane ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM cis-1,3-Dichloropropene ND 0.0145 Q mg/Kg-dry 1 3/22/2019 12:00:10 AM 3/22/2019 12:00:10 AM ND 0.0145 1 mg/Kg-dry ND trans-1,3-Dichloropropylene 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM 1,1,2-Trichloroethane ND 3/22/2019 12:00:10 AM 0.0145 mg/Kg-dry 1 1,3-Dichloropropane ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM Tetrachloroethene (PCE) ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM ND Dibromochloromethane 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM mg/Kg-dry 1,2-Dibromoethane (EDB) ND 0.00363 1 3/22/2019 12:00:10 AM ND Chlorobenzene 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM 1,1,1,2-Tetrachloroethane ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM Ethylbenzene ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM ND m,p-Xylene 0.0363 1 3/22/2019 12:00:10 AM mg/Kg-dry o-Xylene ND 0.0181 1 3/22/2019 12:00:10 AM mg/Kg-dry Styrene ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM Isopropylbenzene ND 0.0181 mg/Kg-dry 1 3/22/2019 12:00:10 AM ND Bromoform 0.0363 1 3/22/2019 12:00:10 AM mg/Kg-dry 1,1,2,2-Tetrachloroethane ND 0.0145 mg/Kg-dry 1 3/22/2019 12:00:10 AM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 11:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-004 **Matrix:** Soil

Client Sample ID: HB-3:3.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch	ID: 23	3915 Analyst: CR
n-Propylbenzene	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
Bromobenzene	ND	0.0145		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,3,5-Trimethylbenzene	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
2-Chlorotoluene	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
4-Chlorotoluene	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
tert-Butylbenzene	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,2,3-Trichloropropane	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,2,4-Trichlorobenzene	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
sec-Butylbenzene	ND	0.0363		mg/Kg-dry	1	3/22/2019 12:00:10 AM
4-Isopropyltoluene	ND	0.0363		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,3-Dichlorobenzene	ND	0.0145		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,4-Dichlorobenzene	ND	0.0145		mg/Kg-dry	1	3/22/2019 12:00:10 AM
n-Butylbenzene	ND	0.0181		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,2-Dichlorobenzene	ND	0.0145		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,2-Dibromo-3-chloropropane	ND	0.363		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,2,4-Trimethylbenzene	ND	0.0145		mg/Kg-dry	1	3/22/2019 12:00:10 AM
Hexachlorobutadiene	ND	0.0363		mg/Kg-dry	1	3/22/2019 12:00:10 AM
Naphthalene	ND	0.0363		mg/Kg-dry	1	3/22/2019 12:00:10 AM
1,2,3-Trichlorobenzene	ND	0.0145		mg/Kg-dry	1	3/22/2019 12:00:10 AM
Surr: Dibromofluoromethane	96.9	56.5 - 129		%Rec	1	3/22/2019 12:00:10 AM
Surr: Toluene-d8	104	64.5 - 151		%Rec	1	3/22/2019 12:00:10 AM
Surr: 1-Bromo-4-fluorobenzene	92.7	54.8 - 168		%Rec	1	3/22/2019 12:00:10 AM
NOTES:						

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Mercury by EPA Method 7471			Batch ID:	23965 Analyst: WF
Mercury	ND	0.268	mg/Kg-dry 1	3/27/2019 11:46:10 AM
Total Metals by EPA Method 6020			Batch ID:	23912 Analyst: WC
Arsenic	2.02	0.233	mg/Kg-dry 1	3/21/2019 3:07:29 PM
Barium	54.4	0.467	mg/Kg-dry 1	3/21/2019 3:07:29 PM
Cadmium	ND	0.187	mg/Kg-dry 1	3/21/2019 3:07:29 PM
Chromium	22.0	0.0933	mg/Kg-dry 1	3/21/2019 3:07:29 PM
Lead	2.72	0.187	mg/Kg-dry 1	3/21/2019 3:07:29 PM
Selenium	0.912	0.467	mg/Kg-dry 1	3/21/2019 3:07:29 PM
Silver	ND	0.0933	mg/Kg-dry 1	3/21/2019 3:07:29 PM

Batch ID: R50191

Work Order: 1903300

Date Reported: 5/8/2019

Analyst: CJ

Client: Shannon & Wilson Collection Date: 3/20/2019 11:00:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-004 **Matrix:** Soil

Client Sample ID: HB-3:3.5

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Percent Moisture 13.6 wt% 1 3/21/2019 8:14:12 AM

Revision v1

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 12:00:00 PM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-005 **Matrix:** Soil

Client Sample ID: HB-2:3

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	ı ID:	23918 Analyst: DW
Diesel (Fuel Oil)	ND	21.8		mg/Kg-dry	1	3/22/2019 7:52:35 AM
Heavy Oil	ND	54.5		mg/Kg-dry	1	3/22/2019 7:52:35 AM
Surr: 2-Fluorobiphenyl	95.7	50 - 150		%Rec	1	3/22/2019 7:52:35 AM
Surr: o-Terphenyl	96.1	50 - 150		%Rec	1	3/22/2019 7:52:35 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	ı ID:	23919 Analyst: IH
Naphthalene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
2-Methylnaphthalene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
1-Methylnaphthalene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Acenaphthylene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Acenaphthene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Fluorene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Phenanthrene	176	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Anthracene	59.4	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Fluoranthene	316	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Pyrene	217	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Benz(a)anthracene	90.3	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Chrysene	92.9	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Benzo(b)fluoranthene	53.2	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Benzo(k)fluoranthene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Benzo(a)pyrene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Indeno(1,2,3-cd)pyrene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Dibenz(a,h)anthracene	ND	42.0		μg/Kg-dry	1	3/22/2019 5:22:16 AM
Benzo(g,h,i)perylene	ND	42.0	Q	μg/Kg-dry	1	3/22/2019 5:22:16 AM
Surr: 2-Fluorobiphenyl	62.2	19.4 - 157		%Rec	1	3/22/2019 5:22:16 AM
Surr: Terphenyl-d14 (surr)	66.1	31.5 - 173		%Rec	1	3/22/2019 5:22:16 AM
NOTES:						
Q - Indicates an analyte with a continu	uing calibration that o	does not meet e	stablished	acceptance ci	riteria	l
Gasoline by NWTPH-Gx				Batch	ı ID:	23915 Analyst: CR
						,
Gasoline	ND	3.79		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Surr: Toluene-d8	98.0	65 - 135		%Rec	1	3/22/2019 12:30:19 AM
Surr: 4-Bromofluorobenzene	89.3	65 - 135		%Rec	1	3/22/2019 12:30:19 AM
Volatile Organic Compounds I	by EPA Method	8260C		Batch	ı ID:	23915 Analyst: CR

ND

0.0151

mg/Kg-dry

Dichlorodifluoromethane (CFC-12)

3/22/2019 12:30:19 AM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 12:00:00 PM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-005 **Matrix:** Soil

Client Sample ID: HB-2:3

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	1D: 23	3915 Analyst: CR
Chloromethane	ND	0.0379	Q	mg/Kg-dry	1	3/22/2019 12:30:19 AM
Vinyl chloride	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Bromomethane	ND	0.0379		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Trichlorofluoromethane (CFC-11)	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Chloroethane	ND	0.0379		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,1-Dichloroethene	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Methylene chloride	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
trans-1,2-Dichloroethene	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Methyl tert-butyl ether (MTBE)	ND	0.0379		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,1-Dichloroethane	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
2,2-Dichloropropane	ND	0.0757	Q	mg/Kg-dry	1	3/22/2019 12:30:19 AM
cis-1,2-Dichloroethene	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Chloroform	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,1,1-Trichloroethane (TCA)	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,1-Dichloropropene	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Carbon tetrachloride	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,2-Dichloroethane (EDC)	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Benzene	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Trichloroethene (TCE)	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,2-Dichloropropane	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Bromodichloromethane	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Dibromomethane	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
cis-1,3-Dichloropropene	ND	0.0151	Q	mg/Kg-dry	1	3/22/2019 12:30:19 AM
Toluene	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
trans-1,3-Dichloropropylene	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,1,2-Trichloroethane	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,3-Dichloropropane	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Tetrachloroethene (PCE)	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Dibromochloromethane	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,2-Dibromoethane (EDB)	ND	0.00379		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Chlorobenzene	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,1,1,2-Tetrachloroethane	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Ethylbenzene	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
m,p-Xylene	ND	0.0379		mg/Kg-dry	1	3/22/2019 12:30:19 AM
o-Xylene	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Styrene	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Isopropylbenzene	ND	0.0189		mg/Kg-dry	1	3/22/2019 12:30:19 AM
Bromoform	ND	0.0379		mg/Kg-dry	1	3/22/2019 12:30:19 AM
1,1,2,2-Tetrachloroethane	ND	0.0151		mg/Kg-dry	1	3/22/2019 12:30:19 AM

Work Order: 1903300

Date Reported: 5/8/2019

Client: Shannon & Wilson Collection Date: 3/20/2019 12:00:00 PM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-005 **Matrix:** Soil

Client Sample ID: HB-2:3

olatile Organic Compounds by	EPA Method	8260C	Batch	ID: 2	3915 Analyst: CR
n-Propylbenzene	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
Bromobenzene	ND	0.0151	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,3,5-Trimethylbenzene	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
2-Chlorotoluene	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
4-Chlorotoluene	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
tert-Butylbenzene	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,2,3-Trichloropropane	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,2,4-Trichlorobenzene	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
sec-Butylbenzene	ND	0.0379	mg/Kg-dry	1	3/22/2019 12:30:19 Al
4-Isopropyltoluene	ND	0.0379	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,3-Dichlorobenzene	ND	0.0151	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,4-Dichlorobenzene	ND	0.0151	mg/Kg-dry	1	3/22/2019 12:30:19 Al
n-Butylbenzene	ND	0.0189	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,2-Dichlorobenzene	ND	0.0151	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,2-Dibromo-3-chloropropane	ND	0.379	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,2,4-Trimethylbenzene	ND	0.0151	mg/Kg-dry	1	3/22/2019 12:30:19 Al
Hexachlorobutadiene	ND	0.0379	mg/Kg-dry	1	3/22/2019 12:30:19 Al
Naphthalene	ND	0.0379	mg/Kg-dry	1	3/22/2019 12:30:19 Al
1,2,3-Trichlorobenzene	ND	0.0151	mg/Kg-dry	1	3/22/2019 12:30:19 Al
Surr: Dibromofluoromethane	96.2	56.5 - 129	%Rec	1	3/22/2019 12:30:19 Al
Surr: Toluene-d8	101	64.5 - 151	%Rec	1	3/22/2019 12:30:19 Al
	92.9	54.8 - 168	%Rec	1	3/22/2019 12:30:19 Al

Mercury by EPA Method 7471			Batch ID:	23965 Analyst: WF
Mercury	ND	0.261	mg/Kg-dry 1	3/27/2019 11:47:46 AM
Total Metals by EPA Method 6020			Batch ID:	23912 Analyst: WC
Arsenic	3.09	0.218	mg/Kg-dry 1	3/21/2019 3:12:04 PM
Barium	91.6	0.436	mg/Kg-dry 1	3/21/2019 3:12:04 PM
Cadmium	ND	0.175	mg/Kg-dry 1	3/21/2019 3:12:04 PM
Chromium	23.3	0.0873	mg/Kg-dry 1	3/21/2019 3:12:04 PM
Lead	6.56	0.175	mg/Kg-dry 1	3/21/2019 3:12:04 PM
Selenium	1.17	0.436	mg/Kg-dry 1	3/21/2019 3:12:04 PM
Silver	ND	0.0873	mg/Kg-dry 1	3/21/2019 3:12:04 PM

Work Order: 1903300

Date Reported: 5/8/2019

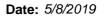
Analyst: CJ

Client: Shannon & Wilson Collection Date: 3/20/2019 12:00:00 PM

Project: Seattle Center Skate Plaza

Lab ID: 1903300-005 **Matrix:** Soil

Client Sample ID: HB-2:3


Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R50191

Percent Moisture 9.76 wt% 1 3/21/2019 8:14:12 AM

Revision v1

Work Order: 1903300

QC SUMMARY REPORT

Shannon & Wilson CLIENT:

CLILITI. Onamion a	VVIISOIT								·	SA BA-11	-1.740
Project: Seattle Cen	ter Skate Plaza					H	exavai	ent Chrom	ium by Er	'A Metno	a /196
Sample ID: MB-24434	SampType: MBLK			Units: mg/Kg		Prep Date:	5/6/2019	9	RunNo: 51 2	280	
Client ID: MBLKS	Batch ID: 24434					Analysis Date:	5/7/2019	9	SeqNo: 100	09001	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.500									
Sample ID: LCS-24434	SampType: LCS			Units: mg/Kg		Prep Date:	5/6/2019	9	RunNo: 512	280	
Client ID: LCSS	Batch ID: 24434					Analysis Date:	5/7/2019	9	SeqNo: 10 6	09002	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.24	0.500	2.500	0	89.7	65	135				
Sample ID: 1904449-011ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	5/6/2019	9	RunNo: 512	280	
Client ID: BATCH	Batch ID: 24434					Analysis Date:	5/7/2019	9	SeqNo: 100	09004	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.567						0		30	
Sample ID: 1904449-011AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	5/6/2019	9	RunNo: 51 2	280	
Client ID: BATCH	Batch ID: 24434					Analysis Date:	5/7/2019	9	SeqNo: 100	09005	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.85	0.573	2.863	0	99.6	65	135				
Sample ID: 1904449-011AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	5/6/2019	9	RunNo: 512	280	
Client ID: BATCH	Batch ID: 24434					Analysis Date:	5/7/2019	9	SeqNo: 100	09006	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.82	0.574	2.868	0	98.3	65	135	2.851	1.14	30	

Page 25 of 54 Revision v1

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

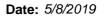
Hexavalent Chromium by EPA Method 7196

Project: Seattle Center Skate Plaza

Sample ID: 1904478-005ADUP SampType: DUP Units: mg/Kg-dry Prep Date: 5/6/2019 RunNo: 51280

Client ID: **BATCH** Batch ID: **24434** Analysis Date: **5/7/2019** SeqNo: **1009027**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual


Chromium, Hexavalent ND 0.513 0 30

Client ID: **BATCH** Batch ID: **24434** Analysis Date: **5/7/2019** SeqNo: **1009028**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Chromium, Hexavalent 2.28 0.515 2.574 0 88.6 65 135

Revision v1 Page 26 of 54

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID: MB-23912	SampType: MBLK			Units: mg/Kg		Prep Date: 3/21/2019	RunNo: 50215
Client ID: MBLKS	Batch ID: 23912					Analysis Date: 3/21/2019	SeqNo: 986291
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	ND	0.197					
Barium	ND	0.394					
Cadmium	ND	0.157					
Chromium	ND	0.0787					
Lead	ND	0.157					
Selenium	ND	0.394					
Silver	ND	0.0787					

Sample ID: LCS-23912	SampType: LCS			Units: mg/Kg		Prep Dat	e: 3/21/20	19	RunNo: 502	215	
Client ID: LCSS	Batch ID: 23912					Analysis Dat	te: 3/21/20	19	SeqNo: 986	5292	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	37.7	0.192	38.46	0	97.9	80	120				
Barium	36.6	0.385	38.46	0	95.3	80	120				
Cadmium	1.80	0.154	1.923	0	93.5	80	120				
Chromium	37.5	0.0769	38.46	0	97.5	80	120				
Lead	19.0	0.154	19.23	0	98.8	80	120				
Selenium	3.71	0.385	3.846	0	96.4	80	120				
Silver	8.01	0.0769	9.615	0	83.3	80	120				

Sample ID: 1903267-001ADUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 3/21/2 0	19	RunNo: 502	215	
Client ID: BATCH	Batch ID: 23912					Analysis Da	te: 3/21/20	19	SeqNo: 986	3294	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	2.22	0.215						2.450	9.91	20	
Barium	37.1	0.431						40.71	9.40	20	
Cadmium	ND	0.172						0		20	
Chromium	23.1	0.0862						26.95	15.6	20	
Lead	1.35	0.172						1.537	12.6	20	
Selenium	0.951	0.431						0.9705	1.98	20	

Revision v1 Page 27 of 54

Work Order: 1903300

QC SUMMARY REPORT

%RPD RPDLimit

Qual

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

LowLimit HighLimit RPD Ref Val

Project: Seattle Center Skate Plaza

Result

Sample ID: 1903267-001ADUP SampType: **DUP** Units: mg/Kg-dry Prep Date: 3/21/2019 RunNo: 50215

Client ID: BATCH Batch ID: 23912 Analysis Date: 3/21/2019 SeqNo: 986294 SPK value SPK Ref Val

ND 0.0862 0 20 Silver

Sample ID: 1903267-001AMS	SampType: MS			Units: mg/Kg-dry Prep Date: 3/21/2019)19	RunNo: 50215		
Client ID: BATCH	Batch ID: 23912				Analysis Date: 3/21/2019				SeqNo: 986298		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	39.0	0.212	42.42	2.450	86.1	75	125				
Barium	157	0.424	42.42	40.71	273	75	125				S
Cadmium	1.94	0.170	2.121	0.04677	89.2	75	125				
Chromium	53.9	0.0848	42.42	26.95	63.4	75	125				S
Lead	17.8	0.170	21.21	1.537	76.6	75	125				
Selenium	4.70	0.424	4.242	0.9705	88.0	75	125				
Silver	6.18	0.0848	10.60	0.06379	57.7	75	125				S

%REC

NOTES:

Analyte

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range (Barium, Chromium, Nickel, Thallium).

Sample ID: 1903267-001AMSD	SampType: MSD				Units: mg/Kg-dry Prep Date: 3/21/2019				RunNo: 502		
Client ID: BATCH	Batch ID: 23912					Analysis Da	te: 3/21/20	119	SeqNo: 986	6299	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	40.9	0.214	42.75	2.450	89.9	75	125	38.98	4.78	20	
Barium	73.7	0.428	42.75	40.71	77.1	75	125	156.5	72.0	20	R
Cadmium	2.10	0.171	2.138	0.04677	96.1	75	125	1.939	8.01	20	
Chromium	62.9	0.0855	42.75	26.95	84.0	75	125	53.85	15.4	20	
Lead	19.0	0.171	21.38	1.537	81.9	75	125	17.79	6.76	20	
Selenium	4.66	0.428	4.275	0.9705	86.2	75	125	4.704	1.03	20	
Silver	6.46	0.0855	10.69	0.06379	59.8	75	125	6.184	4.35	20	S

NOTES:

Page 28 of 54 Revision v1

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect (Antimony, Beryllium, Silver).

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect (Antimony, Beryllium, Silver).

R - High RPD observed. The method is in control as indicated by the LCS.

Seattle Center Skate Plaza

Work Order: 1903300

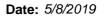
QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID: 1903267-001APDS	SampType: PDS	Units: mg/Kg-dry	Prep Date: 3/21/2019	RunNo: 50215

Client ID: **BATCH** Batch ID: **23912** Analysis Date: **3/21/2019** SeqNo: **986300**


LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Result SPK value SPK Ref Val %REC Qual Silver 1.36 0.0855 2.14 0.0638 60.8 75 125 S

NOTES:

Project:

Revision v1 Page 29 of 54

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Seattle Cer	nter Skate Plaza							Merc	cury by EP	A Metho	d 7471
Sample ID: MB-23965	SampType: MBLK			Units: mg/Kg		Prep Date:	3/26/201	19	RunNo: 503	314	
Client ID: MBLKS	Batch ID: 23965					Analysis Date:	3/27/201	19	SeqNo: 988	3529	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.250									
Sample ID: LCS-23965	SampType: LCS			Units: mg/Kg		Prep Date:	3/26/201	19	RunNo: 50 3	314	
Client ID: LCSS	Batch ID: 23965					Analysis Date:	3/27/201	19	SeqNo: 988	3530	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.506	0.250	0.5000	0	101	80	120				
Sample ID: 1903289-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	3/26/201	19	RunNo: 50 3	314	
Client ID: BATCH	Batch ID: 23965					Analysis Date:	3/27/201	19	SeqNo: 988	3532	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.285						0		20	
Sample ID: 1903289-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	3/26/201	19	RunNo: 50 3	314	
Client ID: BATCH	Batch ID: 23965					Analysis Date:	3/27/201	19	SeqNo: 988	3533	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.508	0.275	0.5493	0.01881	89.0	70	130				
Sample ID: 1903289-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	3/26/201	19	RunNo: 50 3	314	
Client ID: BATCH	Batch ID: 23965					Analysis Date:	3/27/201	19	SeqNo: 988	3534	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.556	0.275	0.5493	0.01881	97.8	70	130	0.5076	9.09	20	_

Revision v1 Page 30 of 54

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Seattle Cen Sample ID: MB-23918	SampTyp	o: MDI K			Units: mg/k	7 a	Prop Dot	e: 3/21/20	110	RunNo: 502	22	
·					Onits: mg/r	_	•					
Client ID: MBLKS	Batch ID:	23918					Analysis Dat	e: 3/21/20	119	SeqNo: 986	6640	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel (Fuel Oil)		ND	20.0									
Heavy Oil		ND	50.0									
Surr: 2-Fluorobiphenyl		17.8		20.00		88.9	50	150				
Surr: o-Terphenyl		18.1		20.00		90.4	50	150				
Sample ID: LCS-23918	SampTyp	e: LCS			Units: mg/k	(g	Prep Dat	e: 3/21/2 0	119	RunNo: 502	232	
Client ID: LCSS	Batch ID:	23918					Analysis Dat	e: 3/21/20	119	SeqNo: 986	641	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel (Fuel Oil)		537	20.0	500.0	0	107	65	135				
Surr: 2-Fluorobiphenyl		18.2		20.00		91.0	50	150				
Surr: o-Terphenyl		17.9		20.00		89.4	50	150				
Sample ID: 1903289-001ADUP	SampTyp	e: DUP			Units: mg/k	(g-dry	Prep Dat	e: 3/21/20)19	RunNo: 502	232	
Client ID: BATCH	Batch ID:	23918					Analysis Dat	e: 3/21/20	19	SeqNo: 986	644	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel (Fuel Oil)		ND	22.4						0		30	
Heavy Oil		ND	55.9						0		30	
Surr: 2-Fluorobiphenyl		22.7		22.38		101	50	150		0		
Surr: o-Terphenyl		23.3		22.38		104	50	150		0		
Sample ID: 1903289-001AMS	SampTyp	e: MS			Units: mg/k	(g-dry	Prep Dat	e: 3/21/20)19	RunNo: 50 2	232	
Client ID: BATCH	Batch ID:	23918					Analysis Dat	e: 3/21/20	119	SeqNo: 986	645	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel (Fuel Oil)		657	22.8	571.1	0	115	65	135				
,												
Surr: 2-Fluorobiphenyl		22.5		22.85		98.6	50	150				

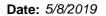
Revision v1 Page 31 of 54

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.


Project: Seattle Center Skate Plaza

Client ID: **BATCH** Batch ID: **23918** Analysis Date: **3/21/2019** SeqNo: **986645**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: 1903289-001AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 3/21/20	19	RunNo: 502	232	
Client ID: BATCH	Batch ID: 23918					Analysis Da	te: 3/21/20	19	SeqNo: 986	6646	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	635	20.8	519.1	0	122	65	135	657.2	3.45	30	
Surr: 2-Fluorobiphenyl	21.1		20.76		102	50	150		0		
Surr: o-Terphenyl	20.4		20.76		98.3	50	150		0		
Sample ID: 1903296-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Da	te: 3/21/20	19	RunNo: 502	285	
Sample ID: 1903296-001ADUP Client ID: BATCH	SampType: DUP Batch ID: 23918			Units: mg/K	g-dry	Prep Da Analysis Da			RunNo: 502 SeqNo: 987		
		RL	SPK value	•	g-dry %REC	Analysis Da	te: 3/22/20				Qual
Client ID: BATCH	Batch ID: 23918	RL 20.4	SPK value	•		Analysis Da	te: 3/22/20	19	SeqNo: 987	7577	Qual
Client ID: BATCH Analyte	Batch ID: 23918 Result		SPK value	•		Analysis Da	te: 3/22/20	RPD Ref Val	SeqNo: 987	7577 RPDLimit	Qual
Client ID: BATCH Analyte Diesel (Fuel Oil)	Batch ID: 23918 Result	20.4	SPK value	•		Analysis Da	te: 3/22/20	RPD Ref Val	SeqNo: 987 %RPD	RPDLimit	Qual

Revision v1 Page 32 of 54

832

845

821

40.0

40.0

40.0

1,000

1,000

1,000

Work Order: 1903300

Project:

2-Methylnaphthalene

1-Methylnaphthalene

Acenaphthylene

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-23919	SampType: N	IBLK			Units: µg/Kg		Prep Dat	e: 3/21/2 0	19	RunNo: 502	230	
Client ID: MBLKS	Batch ID: 2	23919					Analysis Dat	e: 3/21/2 0	19	SeqNo: 986	5596	
Analyte	Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene		ND	40.0									
2-Methylnaphthalene	I	ND	40.0									
1-Methylnaphthalene]	ND	40.0									
Acenaphthylene]	ND	40.0									
Acenaphthene]	ND	40.0									
Fluorene	I	ND	40.0									
Phenanthrene	I	ND	40.0									
Anthracene	I	ND	40.0									
Fluoranthene	1	ND	40.0									
Pyrene	1	ND	40.0									
Benz(a)anthracene	I	ND	40.0									
Chrysene	I	ND	40.0									
Benzo(b)fluoranthene	I	ND	40.0									
Benzo(k)fluoranthene	I	ND	40.0									
Benzo(a)pyrene	I	ND	40.0									
Indeno(1,2,3-cd)pyrene	I	ND	40.0									
Dibenz(a,h)anthracene	I	ND	40.0									
Benzo(g,h,i)perylene	I	ND	40.0									Q
Surr: 2-Fluorobiphenyl	3	351		500.0		70.3	19.4	157				
Surr: Terphenyl-d14 (surr)	4	157		500.0		91.3	31.5	173				
NOTES:												
Q - Indicates an analyte with a cor	ntinuing calibrati	ion that does	not mee	et established	acceptance criteria							
Sample ID: LCS-23919	SampType: L	_cs			Units: µg/Kg		Prep Dat	e: 3/21/2 0	19	RunNo: 502	230	
Client ID: LCSS	Batch ID: 2	23919					Analysis Dat	e: 3/21/2 0	19	SeqNo: 986	5597	
Analyte	Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	8	305	40.0	1,000	0	80.5	52.9	134				

Revision v1 Page 33 of 54

0

0

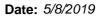
0

45.1

55.5

32.8

83.2


84.5

82.1

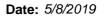
135

133

136

Work Order: 1903300

Proiect:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-23919	SampType: LCS			Units: µg/Kg		Prep Dat	e: 3/21/20	19	RunNo: 502	230	
Client ID: LCSS	Batch ID: 23919					Analysis Dat	e: 3/21/20	19	SeqNo: 986	5597	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	783	40.0	1,000	0	78.3	42	137				
Fluorene	761	40.0	1,000	0	76.1	41.4	144				
Phenanthrene	747	40.0	1,000	0	74.7	36.6	141				
Anthracene	776	40.0	1,000	0	77.6	42.5	157				
Fluoranthene	805	40.0	1,000	0	80.5	43.4	144				
Pyrene	788	40.0	1,000	0	78.8	39.6	146				
Benz(a)anthracene	828	40.0	1,000	0	82.8	36.6	142				
Chrysene	843	40.0	1,000	0	84.3	43	165				
Benzo(b)fluoranthene	1,030	40.0	1,000	0	103	41	155				
Benzo(k)fluoranthene	785	40.0	1,000	0	78.5	30.6	164				
Benzo(a)pyrene	923	40.0	1,000	0	92.3	30.2	171				
Indeno(1,2,3-cd)pyrene	689	40.0	1,000	0	68.9	31.3	159				
Dibenz(a,h)anthracene	696	40.0	1,000	0	69.6	28	158				
Benzo(g,h,i)perylene	642	40.0	1,000	0	64.2	32.4	144				
Surr: 2-Fluorobiphenyl	381		500.0		76.2	19.4	157				
Surr: Terphenyl-d14 (surr)	454		500.0		90.9	31.5	173				
Sample ID: 1903289-002ADUP	SampType: DUP			Units: µg/Kg-c	lry	Prep Dat	e: 3/21/20	19	RunNo: 502	230	
Client ID: BATCH	Batch ID: 23919					Analysis Dat	e: 3/21/20	19	SeqNo: 986	600	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	45.9						0		30	
2-Methylnaphthalene	ND	45.9						0		30	
1-Methylnaphthalene	ND	45.9						0		30	
Acenaphthylene	ND	45.9						0		30	
Acenaphthene	ND	45.9						0		30	
Fluorene	ND	45.9						0		30	
Phenanthrene	ND	45.9						0		30	
Anthracene	ND	45.9						0		30	
Fluoranthene	ND	45.9						0		30	

Revision v1 Page 34 of 54

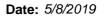
Work Order: 1903300

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)


Sample ID: 1903289-002ADUP	SampType: DUP			Units: µg/l	(g-dry	Prep Dat	e: 3/21/20	19	RunNo: 502	230	
Client ID: BATCH	Batch ID: 23919					Analysis Dat	e: 3/21/20	19	SeqNo: 986	6600	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	ND	45.9						0		30	
Benz(a)anthracene	ND	45.9						0		30	
Chrysene	ND	45.9						0		30	
Benzo(b)fluoranthene	ND	45.9						0		30	
Benzo(k)fluoranthene	ND	45.9						0		30	
Benzo(a)pyrene	ND	45.9						0		30	
Indeno(1,2,3-cd)pyrene	ND	45.9						0		30	
Dibenz(a,h)anthracene	ND	45.9						0		30	
Benzo(g,h,i)perylene	ND	45.9						0		30	Q
Surr: 2-Fluorobiphenyl	340		574.1		59.2	19.4	157		0		
Surr: Terphenyl-d14 (surr)	315		574.1		54.8	31.5	173		0		

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: 1903289-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 3/21/20	19	RunNo: 502	230	
Client ID: BATCH	Batch ID: 23919					Analysis Da	te: 3/21/20	19	SeqNo: 986	6601	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	663	47.3	1,183	0	56.1	38.9	124				
2-Methylnaphthalene	699	47.3	1,183	0	59.1	42.8	151				
1-Methylnaphthalene	711	47.3	1,183	0	60.1	38.4	125				
Acenaphthylene	691	47.3	1,183	0	58.4	32.6	160				
Acenaphthene	651	47.3	1,183	0	55.1	31.7	126				
Fluorene	657	47.3	1,183	0	55.5	43.4	153				
Phenanthrene	614	47.3	1,183	0	51.9	23.8	135				
Anthracene	641	47.3	1,183	0	54.2	32.6	160				
Fluoranthene	637	47.3	1,183	0	53.8	28	144				
Pyrene	628	47.3	1,183	0	53.1	27.8	141				
Benz(a)anthracene	641	47.3	1,183	0	54.2	34.9	139				
Chrysene	706	47.3	1,183	0	59.7	45.2	146				
Benzo(b)fluoranthene	854	47.3	1,183	0	72.2	42.2	168				

Revision v1 Page 35 of 54

Work Order: 1903300

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1903289-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 3/21/2 0	119	RunNo: 502		
Client ID: BATCH	Batch ID: 23919					Analysis Da	te: 3/21/2 0	19	SeqNo: 986	6601	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(k)fluoranthene	628	47.3	1,183	0	53.1	20.5	150				
Benzo(a)pyrene	754	47.3	1,183	0	63.8	34.4	179				
Indeno(1,2,3-cd)pyrene	550	47.3	1,183	0	46.5	11.8	140				
Dibenz(a,h)anthracene	557	47.3	1,183	0	47.1	17.3	156				
Benzo(g,h,i)perylene	507	47.3	1,183	0	42.9	24.9	119				
Surr: 2-Fluorobiphenyl	316		591.4		53.4	19.4	157				
Surr: Terphenyl-d14 (surr)	306		591.4		51.7	31.5	173				

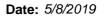
Sample ID: 1903289-002AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 3/21/2 0	19	RunNo: 502	230	
Client ID: BATCH	Batch ID: 23919					Analysis Da	te: 3/22/20	19	SeqNo: 986	6602	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	687	48.3	1,208	0	56.8	38.9	124	663.4	3.42	30	
2-Methylnaphthalene	729	48.3	1,208	0	60.4	42.8	151	699.4	4.14	30	
1-Methylnaphthalene	742	48.3	1,208	0	61.4	38.4	125	710.8	4.24	30	
Acenaphthylene	717	48.3	1,208	0	59.3	32.6	160	690.5	3.71	30	
Acenaphthene	698	48.3	1,208	0	57.8	31.7	126	651.2	6.95	30	
Fluorene	684	48.3	1,208	0	56.7	43.4	153	657.1	4.06	30	
Phenanthrene	653	48.3	1,208	0	54.0	23.8	135	614.5	6.03	30	
Anthracene	675	48.3	1,208	0	55.9	32.6	160	641.4	5.08	30	
Fluoranthene	696	48.3	1,208	0	57.7	28	144	636.7	8.95	30	
Pyrene	683	48.3	1,208	0	56.5	27.8	141	628.1	8.36	30	
Benz(a)anthracene	686	48.3	1,208	0	56.8	34.9	139	641.3	6.78	30	
Chrysene	731	48.3	1,208	0	60.5	45.2	146	705.9	3.47	30	
Benzo(b)fluoranthene	843	48.3	1,208	0	69.8	42.2	168	854.4	1.31	30	
Benzo(k)fluoranthene	684	48.3	1,208	0	56.7	20.5	150	627.9	8.60	30	
Benzo(a)pyrene	777	48.3	1,208	0	64.3	34.4	179	754.1	2.99	30	
Indeno(1,2,3-cd)pyrene	576	48.3	1,208	0	47.7	11.8	140	549.7	4.70	30	
Dibenz(a,h)anthracene	580	48.3	1,208	0	48.0	17.3	156	557.3	4.00	30	
Benzo(g,h,i)perylene	532	48.3	1,208	0	44.0	24.9	119	507.4	4.67	30	

Revision v1 Page 36 of 54

Seattle Center Skate Plaza

Work Order: 1903300

Proiect:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1903289-002AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 3/21/2 0	119	RunNo: 502	230	
Client ID: BATCH	Batch ID: 23919					Analysis Da	te: 3/22/20	119	SeqNo: 986	6602	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl	337		603.9		55.8	19.4	157		0		
Surr: Terphenyl-d14 (surr)	329		603.9		54.4	31.5	173		0		

Revision v1 Page 37 of 54

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

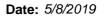
Project: Seattle Cer	nter Skate Plaza								Gasoline	by NW I	PH-G
Sample ID: LCS-23915	SampType: LCS			Units: mg/Kg		Prep Date	e: 3/21/20	19	RunNo: 502	220	
Client ID: LCSS	Batch ID: 23915	5				Analysis Date	e: 3/21/20	19	SeqNo: 986	6446	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	23.6	5.00	25.00	0	94.4	65	135				
Surr: Toluene-d8	1.28		1.250		102	65	135				
Surr: 4-Bromofluorobenzene	1.27		1.250		102	65	135				
Sample ID: MB-23915	SampType: MBL	(Units: mg/Kg		Prep Date	e: 3/21/20	19	RunNo: 502	220	
Client ID: MBLKS	Batch ID: 23915	5				Analysis Date	e: 3/21/20	19	SeqNo: 986	6447	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.22		1.250		97.5	65	135				
Surr: 4-Bromofluorobenzene	1.15		1.250		92.1	65	135				
Sample ID: 1903094-002BDUP	SampType: DUP			Units: mg/Kg-	-dry	Prep Date	e: 3/21/20	19	RunNo: 502	220	
Client ID: BATCH	Batch ID: 23915	5				Analysis Date	e: 3/21/20	19	SeqNo: 986	6431	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	4.98						0		30	
Surr: Toluene-d8	1.22		1.246		97.8	65	135		0		
Surr: 4-Bromofluorobenzene	1.13		1.246		90.6	65	135		0		
Sample ID: 1903300-001BDUP				Units: mg/Kg-	-drv	Prep Date	e: 3/21/20	19	RunNo: 502	220	
	SampType: DUP			Office. Hig/Kg	u. y						
Client ID: HB-1:3	SampType: DUP Batch ID: 2391 5	i		Office. Hig/Kg	uly	Analysis Date			SeqNo: 986	6438	
Client ID: HB-1:3 Analyte		S	SPK value	SPK Ref Val	%REC	Analysis Date	e: 3/21/20		SeqNo: 986 %RPD	6438 RPDLimit	Qual
	Batch ID: 23915		SPK value			Analysis Date	e: 3/21/20	19	•		Qual
Analyte	Batch ID: 23915 Result	RL	SPK value 1.802 1.802			Analysis Date	e: 3/21/20	19 RPD Ref Val	•	RPDLimit	Qual

Revision v1 Page 38 of 54

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson


Gasoline by NWTPH-Gx

Project: Seattle Center Skate Plan

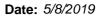
Sample ID: 1903300-003BMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 3/21/20	119	RunNo: 502	220	
Client ID: HB-5:3.5	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	6441	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	33.2	6.27	31.33	2.882	96.7	65	135				
Surr: Toluene-d8	1.61		1.566		103	65	135				
Surr: 4-Bromofluorobenzene	1.62		1.566		104	65	135				

Sample ID: 1903300-003BMSD	SampType: MSD			Units: mg/	/Kg-dry	Prep Dat	e: 3/21/20	19	RunNo: 502	220	
Client ID: HB-5:3.5	Batch ID: 23915					Analysis Dat	e: 3/22/20	19	SeqNo: 986	6442	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	32.8	6.27	31.33	2.882	95.5	65	135	33.18	1.15	30	
Surr: Toluene-d8	1.59		1.566		102	65	135		0		
Surr: 4-Bromofluorobenzene	1.59		1.566		102	65	135		0		

Revision v1 Page 39 of 54

Work Order: 1903300

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

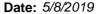
Volatile Organic Compounds by EPA Method 8260C

Sample ID: 1903094-002BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 3/21/20	19	RunNo: 502	218	
Client ID: BATCH	Batch ID: 23915					Analysis Da	te: 3/21/20	19	SeqNo: 986	6401	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0199						0		30	Q
Chloromethane	ND	0.0498						0		30	Q
Vinyl chloride	ND	0.0249						0		30	
Bromomethane	ND	0.0498						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0199						0		30	
Chloroethane	ND	0.0498						0		30	
1,1-Dichloroethene	ND	0.0199						0		30	
Methylene chloride	ND	0.0199						0		30	
trans-1,2-Dichloroethene	ND	0.0199						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0498						0		30	
1,1-Dichloroethane	ND	0.0199						0		30	
2,2-Dichloropropane	ND	0.0997						0		30	
cis-1,2-Dichloroethene	ND	0.0199						0		30	
Chloroform	ND	0.0199						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0249						0		30	
1,1-Dichloropropene	ND	0.0199						0		30	
Carbon tetrachloride	ND	0.0249						0		30	
1,2-Dichloroethane (EDC)	ND	0.0199						0		30	
Benzene	ND	0.0199						0		30	
Trichloroethene (TCE)	ND	0.0199						0		30	
1,2-Dichloropropane	ND	0.0199						0		30	
Bromodichloromethane	ND	0.0199						0		30	
Dibromomethane	ND	0.0199						0		30	
cis-1,3-Dichloropropene	ND	0.0199						0		30	Q
Toluene	ND	0.0199						0		30	
trans-1,3-Dichloropropylene	ND	0.0199						0		30	
1,1,2-Trichloroethane	ND	0.0199						0		30	
1,3-Dichloropropane	ND	0.0249						0		30	
Tetrachloroethene (PCE)	ND	0.0249						0		30	
Dibromochloromethane	ND	0.0249						0		30	
1,2-Dibromoethane (EDB)	ND	0.00498						0		30	

Revision v1 Page 40 of 54

Work Order: 1903300

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

Sample ID: 1903094-002BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 3/21/2 0	119	RunNo: 50 2	218	
Client ID: BATCH	Batch ID: 23915					Analysis Da	te: 3/21/2 0	19	SeqNo: 980	6401	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	0.0249						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0249						0		30	
Ethylbenzene	ND	0.0249						0		30	
m,p-Xylene	ND	0.0498						0		30	
o-Xylene	ND	0.0249						0		30	
Styrene	ND	0.0249						0		30	
Isopropylbenzene	ND	0.0249						0		30	
Bromoform	ND	0.0498						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0199						0		30	
n-Propylbenzene	ND	0.0249						0		30	
Bromobenzene	ND	0.0199						0		30	
1,3,5-Trimethylbenzene	ND	0.0249						0		30	
2-Chlorotoluene	ND	0.0249						0		30	
4-Chlorotoluene	ND	0.0249						0		30	
tert-Butylbenzene	ND	0.0249						0		30	
1,2,3-Trichloropropane	0.0382	0.0249						0.04257	10.8	30	
1,2,4-Trichlorobenzene	ND	0.0249						0		30	
sec-Butylbenzene	ND	0.0498						0		30	
4-Isopropyltoluene	ND	0.0498						0		30	
1,3-Dichlorobenzene	ND	0.0199						0		30	
1,4-Dichlorobenzene	ND	0.0199						0		30	
n-Butylbenzene	ND	0.0249						0		30	
1,2-Dichlorobenzene	ND	0.0199						0		30	
1,2-Dibromo-3-chloropropane	ND	0.498						0		30	
1,2,4-Trimethylbenzene	ND	0.0199						0		30	
Hexachlorobutadiene	ND	0.0498						0		30	
Naphthalene	ND	0.0498						0		30	
1,2,3-Trichlorobenzene	ND	0.0199						0		30	
Surr: Dibromofluoromethane	1.21		1.246		96.8	56.5	129		0		
Surr: Toluene-d8	1.30		1.246		104	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.18		1.246		94.3	54.8	168		0		

Revision v1 Page 41 of 54

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

Project: SampType: **DUP** Sample ID: 1903094-002BDUP

Seattle Center Skate Plaza

Prep Date: 3/21/2019

RunNo: 50218

Analysis Date: 3/21/2019

SeqNo: 986401

Client ID: BATCH Analyte

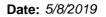
Batch ID: 23915

SPK value SPK Ref Val

Units: mg/Kg-dry

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual


NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

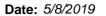
Result

Sample ID: 1903300-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 3/21/20)19	RunNo: 50 2	218	
Client ID: HB-1:3	Batch ID: 23915					Analysis Da	te: 3/21/20)19	SeqNo: 986	6410	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0288						0		30	Q
Chloromethane	ND	0.0721						0		30	Q
Vinyl chloride	ND	0.0360						0		30	
Bromomethane	ND	0.0721						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0288						0		30	
Chloroethane	ND	0.0721						0		30	
1,1-Dichloroethene	ND	0.0288						0		30	
Methylene chloride	ND	0.0288						0		30	
trans-1,2-Dichloroethene	ND	0.0288						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0721						0		30	
1,1-Dichloroethane	ND	0.0288						0		30	
2,2-Dichloropropane	ND	0.144						0		30	Q
cis-1,2-Dichloroethene	ND	0.0288						0		30	
Chloroform	ND	0.0288						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0360						0		30	
1,1-Dichloropropene	ND	0.0288						0		30	
Carbon tetrachloride	ND	0.0360						0		30	
1,2-Dichloroethane (EDC)	ND	0.0288						0		30	
Benzene	ND	0.0288						0		30	
Trichloroethene (TCE)	ND	0.0288						0		30	
1,2-Dichloropropane	ND	0.0288						0		30	
Bromodichloromethane	ND	0.0288						0		30	
Dibromomethane	ND	0.0288						0		30	
cis-1,3-Dichloropropene	ND	0.0288						0		30	Q

Page 42 of 54 Revision v1

Work Order: 1903300

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

Sample ID: 1903300-001BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Da	te: 3/21/2 0	19	RunNo: 502	218	
Client ID: HB-1:3	Batch ID: 23915					Analysis Da	te: 3/21/2 0	119	SeqNo: 986	6410	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	ND	0.0288						0		30	
trans-1,3-Dichloropropylene	ND	0.0288						0		30	
1,1,2-Trichloroethane	ND	0.0288						0		30	
1,3-Dichloropropane	ND	0.0360						0		30	
Tetrachloroethene (PCE)	ND	0.0360						0		30	
Dibromochloromethane	ND	0.0360						0		30	
1,2-Dibromoethane (EDB)	ND	0.00721						0		30	
Chlorobenzene	ND	0.0360						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0360						0		30	
Ethylbenzene	ND	0.0360						0		30	
m,p-Xylene	ND	0.0721						0		30	
o-Xylene	ND	0.0360						0		30	
Styrene	ND	0.0360						0		30	
Isopropylbenzene	ND	0.0360						0		30	
Bromoform	ND	0.0721						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0288						0		30	
n-Propylbenzene	ND	0.0360						0		30	
Bromobenzene	ND	0.0288						0		30	
1,3,5-Trimethylbenzene	ND	0.0360						0		30	
2-Chlorotoluene	ND	0.0360						0		30	
4-Chlorotoluene	ND	0.0360						0		30	
tert-Butylbenzene	ND	0.0360						0		30	
1,2,3-Trichloropropane	ND	0.0360						0		30	
1,2,4-Trichlorobenzene	ND	0.0360						0		30	
sec-Butylbenzene	ND	0.0721						0		30	
4-Isopropyltoluene	ND	0.0721						0		30	
1,3-Dichlorobenzene	ND	0.0288						0		30	
1,4-Dichlorobenzene	ND	0.0288						0		30	
n-Butylbenzene	ND	0.0360						0		30	
1,2-Dichlorobenzene	ND	0.0288						0		30	
1,2-Dibromo-3-chloropropane	ND	0.721						0		30	

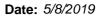
Revision v1 Page 43 of 54

Work Order: 1903300

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson


Volatile Organic Compounds by EPA Method 8260C

Sample ID: 1903300-001BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 3/21/20	19	RunNo: 502	218	
Client ID: HB-1:3	Batch ID: 23915					Analysis Da	te: 3/21/20	19	SeqNo: 986	6410	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	ND	0.0288						0		30	
Hexachlorobutadiene	ND	0.0721						0		30	
Naphthalene	ND	0.0721						0		30	
1,2,3-Trichlorobenzene	ND	0.0288						0		30	
Surr: Dibromofluoromethane	1.77		1.802		98.3	56.5	129		0		
Surr: Toluene-d8	1.89		1.802		105	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.69		1.802		93.8	54.8	168		0		
NOTES:											

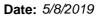
Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample ID: 1903296-002BMS	SampType: MS	·		Units: mg/k	G-dry	Prep Dat	e: 3/21/20	19	RunNo: 502	218	
Client ID: BATCH	Batch ID: 23915					Analysis Dat	te: 3/22/20	19	SeqNo: 986	6407	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.821	0.0220	1.098	0	74.8	43.5	121				
Chloromethane	0.852	0.0549	1.098	0	77.6	45	130				
Vinyl chloride	0.938	0.0275	1.098	0	85.4	43.6	150				
Bromomethane	0.881	0.0549	1.098	0	80.2	21.3	120				
Trichlorofluoromethane (CFC-11)	1.01	0.0220	1.098	0	91.7	35	131				
Chloroethane	1.02	0.0549	1.098	0	92.6	31.9	123				
1,1-Dichloroethene	0.993	0.0220	1.098	0	90.4	47.3	147				
Methylene chloride	0.968	0.0220	1.098	0	88.1	54.7	142				
trans-1,2-Dichloroethene	0.939	0.0220	1.098	0	85.5	52	136				
Methyl tert-butyl ether (MTBE)	0.972	0.0549	1.098	0	88.5	58.5	167				
1,1-Dichloroethane	0.911	0.0220	1.098	0	82.9	51.8	141				
2,2-Dichloropropane	0.868	0.110	1.098	0	79.1	36	123				
cis-1,2-Dichloroethene	0.929	0.0220	1.098	0	84.5	58.6	136				
Chloroform	0.934	0.0220	1.098	0	85.1	53.2	129				
1,1,1-Trichloroethane (TCA)	0.956	0.0275	1.098	0	87.1	58.3	145				
1,1-Dichloropropene	0.944	0.0220	1.098	0	86.0	55.1	138				
Carbon tetrachloride	0.942	0.0275	1.098	0	85.7	53.3	144				

Revision v1 Page 44 of 54

Work Order: 1903300

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

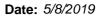
Sample ID: 1903296-002BMS	SampType: MS			Units: mg/k	(g-dry	Prep Da	te: 3/21/2 0	19	RunNo: 502	218	
Client ID: BATCH	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	6407	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane (EDC)	0.949	0.0220	1.098	0	86.4	51.3	139				
Benzene	0.953	0.0220	1.098	0	86.8	63.5	133				
Trichloroethene (TCE)	0.961	0.0220	1.098	0	87.5	61.6	147				
1,2-Dichloropropane	0.938	0.0220	1.098	0	85.4	59	136				
Bromodichloromethane	0.943	0.0220	1.098	0	85.9	50.7	141				
Dibromomethane	0.938	0.0220	1.098	0	85.4	50.6	137				
cis-1,3-Dichloropropene	0.882	0.0220	1.098	0	80.3	50.4	138				
Toluene	0.977	0.0220	1.098	0	89.0	63.4	132				
trans-1,3-Dichloropropylene	0.927	0.0220	1.098	0	84.4	44.1	147				
1,1,2-Trichloroethane	0.960	0.0220	1.098	0	87.4	51.6	137				
1,3-Dichloropropane	0.968	0.0275	1.098	0	88.2	53.1	134				
Tetrachloroethene (PCE)	0.974	0.0275	1.098	0	88.7	35.6	158				
Dibromochloromethane	0.942	0.0275	1.098	0	85.8	55.3	140				
1,2-Dibromoethane (EDB)	0.956	0.00549	1.098	0	87.0	50.4	136				
Chlorobenzene	0.971	0.0275	1.098	0	88.4	60	133				
1,1,1,2-Tetrachloroethane	0.953	0.0275	1.098	0	86.8	53.1	142				
Ethylbenzene	0.984	0.0275	1.098	0	89.6	54.5	134				
m,p-Xylene	1.96	0.0549	2.197	0	89.4	53.1	132				
o-Xylene	0.970	0.0275	1.098	0	88.3	53.3	139				
Styrene	0.972	0.0275	1.098	0	88.5	51.1	132				
Isopropylbenzene	0.982	0.0275	1.098	0	89.4	58.9	138				
Bromoform	0.939	0.0549	1.098	0	85.5	57.9	130				
1,1,2,2-Tetrachloroethane	0.944	0.0220	1.098	0	85.9	51.9	131				
n-Propylbenzene	1.00	0.0275	1.098	0	91.2	53.6	140				
Bromobenzene	0.948	0.0220	1.098	0	86.3	54.2	140				
1,3,5-Trimethylbenzene	1.05	0.0275	1.098	0	95.8	51.8	136				
2-Chlorotoluene	0.981	0.0275	1.098	0	89.4	51.6	136				
4-Chlorotoluene	0.990	0.0275	1.098	0	90.2	50.1	139				
tert-Butylbenzene	0.992	0.0275	1.098	0	90.3	50.5	135				
1,2,3-Trichloropropane	0.978	0.0275	1.098	0	89.0	50.5	131				
1,2,4-Trichlorobenzene	0.938	0.0275	1.098	0	85.4	50.8	130				

Revision v1 Page 45 of 54

Work Order: 1903300

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

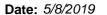
Sample ID: 1903296-002BMS	SampType: MS			Units: mg/h	(g-dry	Prep Da	te: 3/21/20	019	RunNo: 502	218	
Client ID: BATCH	Batch ID: 23915					Analysis Da	te: 3/22/2 0	019	SeqNo: 986	6407	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	1.01	0.0549	1.098	0	91.6	52.6	141				
4-Isopropyltoluene	1.02	0.0549	1.098	0	92.5	52.9	134				
1,3-Dichlorobenzene	0.947	0.0220	1.098	0	86.2	52.6	131				
1,4-Dichlorobenzene	0.968	0.0220	1.098	0	88.1	52.9	129				
n-Butylbenzene	1.00	0.0275	1.098	0	91.4	52.6	130				
1,2-Dichlorobenzene	0.966	0.0220	1.098	0	88.0	55.8	129				
1,2-Dibromo-3-chloropropane	0.939	0.549	1.098	0	85.5	40.5	131				
1,2,4-Trimethylbenzene	1.07	0.0220	1.098	0	97.7	50.6	137				
Hexachlorobutadiene	0.945	0.0549	1.098	0	86.1	40.6	158				
Naphthalene	0.953	0.0549	1.098	0	86.8	52.3	124				
1,2,3-Trichlorobenzene	0.979	0.0220	1.098	0	89.2	54.4	124				
Surr: Dibromofluoromethane	1.31		1.373		95.5	56.5	129				
Surr: Toluene-d8	1.45		1.373		106	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.42		1.373		104	54.8	168				

Sample ID: 1903296-002BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Da	te: 3/21/20	19	RunNo: 502	218	
Client ID: BATCH	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	6408	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.711	0.0220	1.098	0	64.7	43.5	121	0.8214	14.4	30	
Chloromethane	0.774	0.0549	1.098	0	70.5	45	130	0.8521	9.55	30	
Vinyl chloride	0.839	0.0275	1.098	0	76.4	43.6	150	0.9377	11.1	30	
Bromomethane	0.821	0.0549	1.098	0	74.8	21.3	120	0.8809	7.02	30	
Trichlorofluoromethane (CFC-11)	0.886	0.0220	1.098	0	80.7	35	131	1.007	12.7	30	
Chloroethane	0.885	0.0549	1.098	0	80.6	31.9	123	1.018	13.9	30	
1,1-Dichloroethene	0.880	0.0220	1.098	0	80.1	47.3	147	0.9929	12.1	30	
Methylene chloride	0.868	0.0220	1.098	0	79.0	54.7	142	0.9676	10.8	30	
trans-1,2-Dichloroethene	0.852	0.0220	1.098	0	77.5	52	136	0.9388	9.72	30	
Methyl tert-butyl ether (MTBE)	0.987	0.0549	1.098	0	89.9	58.5	167	0.9716	1.61	30	
1,1-Dichloroethane	0.826	0.0220	1.098	0	75.2	51.8	141	0.9108	9.80	30	

Revision v1 Page 46 of 54

Work Order: 1903300

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

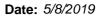
Sample ID: 1903296-002BMSD	SampType: MSD	SD Units: mg/Kg-dry Prep Date				Prep Date: 3/21/2019			RunNo: 50218		
Client ID: BATCH	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	6408	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,2-Dichloropropane	0.802	0.110	1.098	0	73.0	36	123	0.8684	7.92	30	
cis-1,2-Dichloroethene	0.844	0.0220	1.098	0	76.9	58.6	136	0.9286	9.53	30	
Chloroform	0.843	0.0220	1.098	0	76.8	53.2	129	0.9342	10.3	30	
1,1,1-Trichloroethane (TCA)	0.857	0.0275	1.098	0	78.1	58.3	145	0.9564	10.9	30	
1,1-Dichloropropene	0.881	0.0220	1.098	0	80.2	55.1	138	0.9444	6.91	30	
Carbon tetrachloride	0.857	0.0275	1.098	0	78.0	53.3	144	0.9416	9.40	30	
1,2-Dichloroethane (EDC)	0.881	0.0220	1.098	0	80.3	51.3	139	0.9487	7.35	30	
Benzene	0.891	0.0220	1.098	0	81.2	63.5	133	0.9532	6.71	30	
Trichloroethene (TCE)	0.900	0.0220	1.098	0	81.9	61.6	147	0.9614	6.62	30	
1,2-Dichloropropane	0.898	0.0220	1.098	0	81.7	59	136	0.9375	4.36	30	
Bromodichloromethane	0.881	0.0220	1.098	0	80.2	50.7	141	0.9433	6.86	30	
Dibromomethane	0.880	0.0220	1.098	0	80.1	50.6	137	0.9382	6.42	30	
cis-1,3-Dichloropropene	0.848	0.0220	1.098	0	77.2	50.4	138	0.8817	3.85	30	
Toluene	0.906	0.0220	1.098	0	82.4	63.4	132	0.9773	7.62	30	
trans-1,3-Dichloropropylene	0.909	0.0220	1.098	0	82.8	44.1	147	0.9272	1.97	30	
1,1,2-Trichloroethane	0.948	0.0220	1.098	0	86.3	51.6	137	0.9604	1.31	30	
1,3-Dichloropropane	0.949	0.0275	1.098	0	86.4	53.1	134	0.9684	2.00	30	
Tetrachloroethene (PCE)	0.918	0.0275	1.098	0	83.6	35.6	158	0.9742	5.90	30	
Dibromochloromethane	0.919	0.0275	1.098	0	83.7	55.3	140	0.9419	2.42	30	
1,2-Dibromoethane (EDB)	0.943	0.00549	1.098	0	85.8	50.4	136	0.9556	1.38	30	
Chlorobenzene	0.918	0.0275	1.098	0	83.5	60	133	0.9713	5.68	30	
1,1,1,2-Tetrachloroethane	0.937	0.0275	1.098	0	85.3	53.1	142	0.9531	1.72	30	
Ethylbenzene	0.930	0.0275	1.098	0	84.6	54.5	134	0.9844	5.72	30	
m,p-Xylene	1.84	0.0549	2.197	0	83.9	53.1	132	1.965	6.37	30	
o-Xylene	0.908	0.0275	1.098	0	82.7	53.3	139	0.9697	6.57	30	
Styrene	0.916	0.0275	1.098	0	83.4	51.1	132	0.9719	5.89	30	
Isopropylbenzene	0.920	0.0275	1.098	0	83.8	58.9	138	0.9817	6.45	30	
Bromoform	0.941	0.0549	1.098	0	85.7	57.9	130	0.9388	0.271	30	
1,1,2,2-Tetrachloroethane	0.969	0.0220	1.098	0	88.2	51.9	131	0.9436	2.63	30	
n-Propylbenzene	0.939	0.0275	1.098	0	85.5	53.6	140	1.002	6.53	30	
Bromobenzene	0.923	0.0220	1.098	0	84.0	54.2	140	0.9481	2.70	30	

Revision v1 Page 47 of 54

Work Order: 1903300

QC SUMMARY REPORT

CLIENT: Shannon & Wilson


Volatile Organic Compounds by EPA Method 8260C

Project:	Seattle Cente	r Skate Pla	aza
Sample ID:	1903296-002BMSD	SampType:	MSD
Client ID:	BATCH	Batch ID:	23915

Sample ID: 1903296-002BMSD	SampType: MSD	·		Units: mg/	Kg-dry	Prep Da	te: 3/21/2 0	119	RunNo: 502	218	
Client ID: BATCH	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	408	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	0.991	0.0275	1.098	0	90.2	51.8	136	1.052	6.02	30	
2-Chlorotoluene	0.923	0.0275	1.098	0	84.0	51.6	136	0.9814	6.12	30	
4-Chlorotoluene	0.938	0.0275	1.098	0	85.4	50.1	139	0.9903	5.44	30	
tert-Butylbenzene	0.926	0.0275	1.098	0	84.3	50.5	135	0.9916	6.80	30	
1,2,3-Trichloropropane	0.996	0.0275	1.098	0	90.6	50.5	131	0.9777	1.82	30	
1,2,4-Trichlorobenzene	0.995	0.0275	1.098	0	90.6	50.8	130	0.9380	5.87	30	
sec-Butylbenzene	0.934	0.0549	1.098	0	85.0	52.6	141	1.006	7.46	30	
4-Isopropyltoluene	0.952	0.0549	1.098	0	86.7	52.9	134	1.016	6.43	30	
1,3-Dichlorobenzene	0.973	0.0220	1.098	0	88.6	52.6	131	0.9472	2.66	30	
1,4-Dichlorobenzene	0.978	0.0220	1.098	0	89.0	52.9	129	0.9675	1.05	30	
n-Butylbenzene	0.999	0.0275	1.098	0	91.0	52.6	130	1.004	0.503	30	
1,2-Dichlorobenzene	0.986	0.0220	1.098	0	89.8	55.8	129	0.9663	2.05	30	
1,2-Dibromo-3-chloropropane	1.07	0.549	1.098	0	97.5	40.5	131	0.9386	13.2	30	
1,2,4-Trimethylbenzene	1.00	0.0220	1.098	0	91.2	50.6	137	1.073	6.85	30	
Hexachlorobutadiene	0.980	0.0549	1.098	0	89.2	40.6	158	0.9455	3.61	30	
Naphthalene	1.01	0.0549	1.098	0	92.3	52.3	124	0.9533	6.18	30	
1,2,3-Trichlorobenzene	1.05	0.0220	1.098	0	95.9	54.4	124	0.9795	7.26	30	
Surr: Dibromofluoromethane	1.26		1.373		91.6	56.5	129		0		
Surr: Toluene-d8	1.41		1.373		103	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.37		1.373		99.7	54.8	168		0		

Sample ID: LCS-23915	SampType: LCS			Units: mg/Kg		Prep Dat	te: 3/21/20	19	RunNo: 502	218	
Client ID: LCSS	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	6417	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.607	0.0200	1.000	0	60.7	14.3	167				
Chloromethane	0.690	0.0500	1.000	0	69.0	32	156				
Vinyl chloride	0.758	0.0250	1.000	0	75.8	43.4	151				
Bromomethane	0.895	0.0500	1.000	0	89.5	35	155				
Trichlorofluoromethane (CFC-11)	0.873	0.0200	1.000	0	87.3	33.8	156				

Page 48 of 54 Revision v1

Work Order: 1903300

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

Sample ID: LCS-23915	SampType: LCS			Units: mg/Kg		Prep Da	te: 3/21/20	19	RunNo: 50218			
Client ID: LCSS	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	6417		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Chloroethane	0.847	0.0500	1.000	0	84.7	33.1	147					
1,1-Dichloroethene	0.856	0.0200	1.000	0	85.6	30.9	145					
Methylene chloride	0.846	0.0200	1.000	0	84.6	46.3	140					
trans-1,2-Dichloroethene	0.810	0.0200	1.000	0	81.0	68	130					
Methyl tert-butyl ether (MTBE)	0.923	0.0500	1.000	0	92.3	44.1	152					
1,1-Dichloroethane	0.808	0.0200	1.000	0	80.8	61.9	137					
2,2-Dichloropropane	0.899	0.100	1.000	0	89.9	35.5	186					
cis-1,2-Dichloroethene	0.809	0.0200	1.000	0	80.9	71.3	135					
Chloroform	0.815	0.0200	1.000	0	81.5	69	145					
1,1,1-Trichloroethane (TCA)	0.849	0.0250	1.000	0	84.9	69	132					
1,1-Dichloropropene	0.868	0.0200	1.000	0	86.8	72.7	131					
Carbon tetrachloride	0.865	0.0250	1.000	0	86.5	63.4	137					
1,2-Dichloroethane (EDC)	0.862	0.0200	1.000	0	86.2	50.9	162					
Benzene	0.859	0.0200	1.000	0	85.9	64.3	133					
Trichloroethene (TCE)	0.883	0.0200	1.000	0	88.3	65.5	137					
1,2-Dichloropropane	0.864	0.0200	1.000	0	86.4	63.2	142					
Bromodichloromethane	0.858	0.0200	1.000	0	85.8	53.4	131					
Dibromomethane	0.857	0.0200	1.000	0	85.7	60.1	146					
cis-1,3-Dichloropropene	0.847	0.0200	1.000	0	84.7	59.1	143					
Toluene	0.870	0.0200	1.000	0	87.0	67	144					
trans-1,3-Dichloropropylene	0.909	0.0200	1.000	0	90.9	49.2	149					
1,1,2-Trichloroethane	0.919	0.0200	1.000	0	91.9	56.9	147					
1,3-Dichloropropane	0.915	0.0250	1.000	0	91.5	56.1	153					
Tetrachloroethene (PCE)	0.896	0.0250	1.000	0	89.6	52.7	150					
Dibromochloromethane	0.895	0.0250	1.000	0	89.5	70.6	144					
1,2-Dibromoethane (EDB)	0.935	0.00500	1.000	0	93.5	50.5	154					
Chlorobenzene	0.867	0.0250	1.000	0	86.7	84.9	125					
1,1,1,2-Tetrachloroethane	0.913	0.0250	1.000	0	91.3	65.9	141					
Ethylbenzene	0.890	0.0250	1.000	0	89.0	74	129					
m,p-Xylene	1.76	0.0500	2.000	0	88.0	70	124					
o-Xylene	0.875	0.0250	1.000	0	87.5	68.1	139					

Revision v1 Page 49 of 54

Seattle Center Skate Plaza

Work Order: 1903300

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

Sample ID: LCS-23915	SampType: LCS			Units: mg/Kg		Prep Da	te: 3/21/20	19	RunNo: 502	218	
Client ID: LCSS	Batch ID: 23915					Analysis Da	te: 3/22/20	19	SeqNo: 986	6417	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Styrene	0.870	0.0250	1.000	0	87.0	73.3	146				
Isopropylbenzene	0.884	0.0250	1.000	0	88.4	70	130				
Bromoform	0.905	0.0500	1.000	0	90.5	44.3	130				
1,1,2,2-Tetrachloroethane	0.916	0.0200	1.000	0	91.6	44.8	165				
n-Propylbenzene	0.914	0.0250	1.000	0	91.4	75.8	139				
Bromobenzene	0.877	0.0200	1.000	0	87.7	49.2	144				
1,3,5-Trimethylbenzene	0.965	0.0250	1.000	0	96.5	76.5	135				
2-Chlorotoluene	0.894	0.0250	1.000	0	89.4	76.7	129				
4-Chlorotoluene	0.903	0.0250	1.000	0	90.3	77.5	125				
tert-Butylbenzene	0.895	0.0250	1.000	0	89.5	66.2	130				
1,2,3-Trichloropropane	0.939	0.0250	1.000	0	93.9	67.9	136				
1,2,4-Trichlorobenzene	0.929	0.0250	1.000	0	92.9	65.5	150				
sec-Butylbenzene	0.924	0.0500	1.000	0	92.4	75.6	133				
4-Isopropyltoluene	0.935	0.0500	1.000	0	93.5	76.8	131				
1,3-Dichlorobenzene	0.911	0.0200	1.000	0	91.1	48.6	144				
1,4-Dichlorobenzene	0.918	0.0200	1.000	0	91.8	72.6	126				
n-Butylbenzene	0.977	0.0250	1.000	0	97.7	78.4	140				
1,2-Dichlorobenzene	0.936	0.0200	1.000	0	93.6	72.8	126				
1,2-Dibromo-3-chloropropane	0.968	0.500	1.000	0	96.8	40.2	155				
1,2,4-Trimethylbenzene	0.979	0.0200	1.000	0	97.9	77.5	129				
Hexachlorobutadiene	0.929	0.0500	1.000	0	92.9	42	151				
Naphthalene	0.915	0.0500	1.000	0	91.5	46.5	167				
1,2,3-Trichlorobenzene	0.944	0.0200	1.000	0	94.4	64.5	149				
Surr: Dibromofluoromethane	1.18		1.250		94.1	56.5	129				
Surr: Toluene-d8	1.33		1.250		106	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.28		1.250		102	54.8	168				

Revision v1 Page 50 of 54

Work Order: 1903300

QC SUMMARY REPORT

Qual

CLIENT: Shannon & Wilson

Sample Moisture (Percent Moisture)

Project: Seattle Center Skate Plaza

Sample ID: 1903289-002ADUP SampType: DUP Units: wt% Prep Date: 3/21/2019 RunNo: 50191
Client ID: BATCH Batch ID: R50191 Analysis Date: 3/21/2019 SeqNo: 985679
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit

Percent Moisture 19.6 0.500 26.99 31.5 20 R

Sample ID: 1903300-002ADUP SampType: **DUP** Units: wt% Prep Date: 3/21/2019 RunNo: 50191 Client ID: HB-4:3.5 Batch ID: R50191 Analysis Date: 3/21/2019 SeqNo: 985692 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 18.9 0.500 17.38 8.41 20

Revision v1 Page 51 of 54

Sample Log-In Check List

С	Client Name: SW		Work Order Numb	Work Order Number: 1903300						
L	ogged by: Clare Griggs		Date Received:	3/20/2019	9 1:08:00 PM					
Cha	ain of Custody									
	Is Chain of Custody complete?		Yes 🗸	No 🗆	Not Present					
2.	How was the sample delivered?		Client							
Loc	g In									
_	Coolers are present?		Yes 🗸	No 🗌	NA 🗌					
4.	Shipping container/cooler in good cor	ndition?	Yes 🗸	No 🗌						
5.	Custody Seals present on shipping of (Refer to comments for Custody Seal		Yes	No 🗌	Not Required ✓					
6.	Was an attempt made to cool the sar	mples?	Yes 🗸	No \square	NA \square					
7.	Were all items received at a tempera	ture of >0°C to 10.0°C*	Yes 🗸	No 🗆	NA 🗆					
8.	Sample(s) in proper container(s)?		Yes 🗸	No 🗆						
9.	Sufficient sample volume for indicate	d test(s)?	Yes 🗹	No \square						
10	Are samples properly preserved?		Yes 🗹	No \square						
11.	. Was preservative added to bottles?		Yes	No 🗸	NA \square					
12	. Is there headspace in the VOA vials?		Yes	No 🗌	NA 🗸					
13	Did all samples containers arrive in g	ood condition(unbroken)?	Yes 🗹	No 🗌						
14	. Does paperwork match bottle labels?		Yes 🗸	No \square						
15	. Are matrices correctly identified on C	hain of Custody?	Yes 🗹	No 🗌						
16	ls it clear what analyses were reques	ted?	Yes 🗸	No 🗌						
17	. Were all holding times able to be met	?	Yes 🗸	No \square						
Spe	ecial Handling (if applicable)									
18	Was client notified of all discrepancie	s with this order?	Yes	No 🗌	NA 🗹					
	Person Notified:	Da	ate:							
	By Whom:	Vi	a: eMail Ph	one 🗌 Fax	☐ In Person					
	Regarding:									
	Client Instructions:									

Item Information

Item #	Temp °C
Cooler	3.9
Sample	3.1
Temp Blank	1.1

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

COC 1.2 - 2.22.17

www.fremontanalytical.com

Page 1 of 2

Page 54 of 54

COC 1.2 - 2.22.17

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson

Dave Randall 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Seattle Center Skate Plaza Work Order Number: 1905255

May 24, 2019

Attention Dave Randall:

Fremont Analytical, Inc. received 2 sample(s) on 5/17/2019 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

John C. Rady

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 05/24/2019

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Seattle Center Skate Plaza

Work Order: 1905255

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1905255-001
 HB-2:C1
 05/16/2019 11:45 AM
 05/17/2019 9:12 AM

 1905255-002
 HB-2:C2
 05/16/2019 11:48 AM
 05/17/2019 9:12 AM

Case Narrative

WO#: **1905255**Date: **5/24/2019**

CLIENT: Shannon & Wilson

Project: Seattle Center Skate Plaza

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1905255**

Date Reported: 5/24/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1905255**Date Reported: **5/24/2019**

Client: Shannon & Wilson Collection Date: 5/16/2019 11:45:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1905255-001 **Matrix:** Soil

Client Sample ID: HB-2:C1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 24	671 Analyst: SB
Naphthalene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
2-Methylnaphthalene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
1-Methylnaphthalene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Acenaphthylene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Acenaphthene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Fluorene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Phenanthrene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Anthracene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Fluoranthene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Pyrene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Benz(a)anthracene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Chrysene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Benzo(b)fluoranthene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Benzo(k)fluoranthene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Benzo(a)pyrene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Indeno(1,2,3-cd)pyrene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Dibenz(a,h)anthracene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Benzo(g,h,i)perylene	ND	45.3		μg/Kg-dry	1	5/23/2019 6:31:46 PM
Surr: 2-Fluorobiphenyl	88.7	19.4 - 157		%Rec	1	5/23/2019 6:31:46 PM
Surr: Terphenyl-d14 (surr)	85.3	31.5 - 173		%Rec	1	5/23/2019 6:31:46 PM
Sample Moisture (Percent Moi	isture)			Batch	n ID: R5	51593 Analyst: PA
Parcent Maisture	16.0	0.500		va/+0/.	1	5/21/2010 2:07:16 DM

Percent Moisture 16.9 0.500 wt% 1 5/21/2019 2:07:16 PM

Original

Analytical Report

Work Order: **1905255**Date Reported: **5/24/2019**


Client: Shannon & Wilson Collection Date: 5/16/2019 11:48:00 AM

Project: Seattle Center Skate Plaza

Lab ID: 1905255-002 **Matrix:** Soil

Client Sample ID: HB-2:C2

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	ı ID:	24671 Analyst: SB
Naphthalene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
2-Methylnaphthalene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
1-Methylnaphthalene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Acenaphthylene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Acenaphthene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Fluorene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Phenanthrene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Anthracene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Fluoranthene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Pyrene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Benz(a)anthracene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Chrysene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Benzo(b)fluoranthene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Benzo(k)fluoranthene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Benzo(a)pyrene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Indeno(1,2,3-cd)pyrene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Dibenz(a,h)anthracene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Benzo(g,h,i)perylene	ND	47.2		μg/Kg-dry	1	5/23/2019 8:07:19 PM
Surr: 2-Fluorobiphenyl	87.0	19.4 - 157		%Rec	1	5/23/2019 8:07:19 PM
Surr: Terphenyl-d14 (surr)	86.8	31.5 - 173		%Rec	1	5/23/2019 8:07:19 PM
Sample Moisture (Percent Moi	sture)			Batch	ı ID:	R51593 Analyst: PA
Percent Moisture	18.5	0.500		wt%	1	5/21/2019 2:07:16 PM

Work Order: 1905255

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-24671	SampType: MBLK			Units: µg/Kg		Prep Da	te: 5/22/2	019	RunNo: 516	695	
Client ID: MBLKS	Batch ID: 24671					Analysis Da	te: 5/23/2	019	SeqNo: 10	19519	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	40.0									
2-Methylnaphthalene	ND	40.0									
1-Methylnaphthalene	ND	40.0									
Acenaphthylene	ND	40.0									
Acenaphthene	ND	40.0									
Fluorene	ND	40.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	40.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	40.0									
Benzo(k)fluoranthene	ND	40.0									
Benzo(a)pyrene	ND	40.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Benzo(g,h,i)perylene	ND	40.0									
Surr: 2-Fluorobiphenyl	661		500.0		132	19.4	157				
Surr: Terphenyl-d14 (surr)	618		500.0		124	31.5	173				

Sample ID: LCS-24671	SampType: LCS			Units: µg/Kg		Prep Da	te: 5/22/20	19	RunNo: 516	95	
Client ID: LCSS	Batch ID: 24671					Analysis Da	te: 5/23/20	19	SeqNo: 10 1	9521	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	940	40.0	1,000	0	94.0	52.9	134				
2-Methylnaphthalene	937	40.0	1,000	0	93.7	45.1	135				
1-Methylnaphthalene	935	40.0	1,000	0	93.5	55.7	141				
Acenaphthylene	944	40.0	1,000	0	94.4	32.8	136				
Acenaphthene	948	40.0	1,000	0	94.8	42	137				

Original Page 7 of 14

Work Order: 1905255

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-24671	SampType: LCS			Units: µg/Kg		Prep Da	te: 5/22/20)19	RunNo: 516	695	
Client ID: LCSS	Batch ID: 24671					Analysis Da	te: 5/23/20)19	SeqNo: 10	19521	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	954	40.0	1,000	0	95.4	41.4	144				
Phenanthrene	930	40.0	1,000	0	93.0	36.6	141				
Anthracene	913	40.0	1,000	0	91.3	42.5	157				
Fluoranthene	987	40.0	1,000	0	98.7	43.4	144				
Pyrene	995	40.0	1,000	0	99.5	39.6	146				
Benz(a)anthracene	1,070	40.0	1,000	0	107	36.6	142				
Chrysene	947	40.0	1,000	0	94.7	43	165				
Benzo(b)fluoranthene	917	40.0	1,000	0	91.7	41	155				
Benzo(k)fluoranthene	1,050	40.0	1,000	0	105	30.6	164				
Benzo(a)pyrene	1,010	40.0	1,000	0	101	30.2	171				
Indeno(1,2,3-cd)pyrene	963	40.0	1,000	0	96.3	31.3	159				
Dibenz(a,h)anthracene	1,000	40.0	1,000	0	100	28	158				
Benzo(g,h,i)perylene	889	40.0	1,000	0	88.9	32.4	144				
Surr: 2-Fluorobiphenyl	673		500.0		135	19.4	157				
Surr: Terphenyl-d14 (surr)	639		500.0		128	31.5	173				

Sample ID: 1905255-001ADUP	SampType: DUP			Units: µg/Kg-	dry	Prep Date	e: 5/22/20	19	RunNo: 516	695	
Client ID: HB-2:C1	Batch ID: 24671					Analysis Dat	e: 5/23/20	19	SeqNo: 10 1	9525	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	45.7						0		30	
2-Methylnaphthalene	ND	45.7						0		30	
1-Methylnaphthalene	ND	45.7						0		30	
Acenaphthylene	ND	45.7						0		30	
Acenaphthene	ND	45.7						0		30	
Fluorene	ND	45.7						0		30	
Phenanthrene	ND	45.7						0		30	
Anthracene	ND	45.7						0		30	
Fluoranthene	ND	45.7						0		30	
Pyrene	ND	45.7						0		30	

Original Page 8 of 14

Work Order: 1905255

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1905255-001ADUP	SampType: DUP			Units: µg/Kg	j-dry	Prep Da	te: 5/22/2 0	19	RunNo: 516	95	
Client ID: HB-2:C1	Batch ID: 24671					Analysis Da	te: 5/23/2 0	119	SeqNo: 101	9525	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	45.7						0		30	
Chrysene	ND	45.7						0		30	
Benzo(b)fluoranthene	ND	45.7						0		30	
Benzo(k)fluoranthene	ND	45.7						0		30	
Benzo(a)pyrene	ND	45.7						0		30	
Indeno(1,2,3-cd)pyrene	ND	45.7						0		30	
Dibenz(a,h)anthracene	ND	45.7						0		30	
Benzo(g,h,i)perylene	ND	45.7						0		30	
Surr: 2-Fluorobiphenyl	536		571.1		93.9	19.4	157		0		
Surr: Terphenyl-d14 (surr)	559		571.1		97.9	31.5	173		0		

Sample ID: 1905255-001AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 5/22/20	19	RunNo: 516	95	
Client ID: HB-2:C1	Batch ID: 24671					Analysis Da	te: 5/23/20	19	SeqNo: 101	9527	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	867	44.2	1,104	0	78.5	38.9	124				
2-Methylnaphthalene	876	44.2	1,104	0	79.3	42.8	151				
1-Methylnaphthalene	861	44.2	1,104	0	77.9	38.4	125				
Acenaphthylene	913	44.2	1,104	0	82.7	32.6	160				
Acenaphthene	868	44.2	1,104	0	78.6	31.7	126				
Fluorene	882	44.2	1,104	0	79.9	43.4	153				
Phenanthrene	849	44.2	1,104	0	76.9	23.8	135				
Anthracene	900	44.2	1,104	0	81.5	32.6	160				
Fluoranthene	962	44.2	1,104	0	87.1	28	144				
Pyrene	956	44.2	1,104	0	86.5	27.8	141				
Benz(a)anthracene	1,070	44.2	1,104	0	97.3	34.9	139				
Chrysene	856	44.2	1,104	0	77.6	45.2	146				
Benzo(b)fluoranthene	1,010	44.2	1,104	0	91.5	42.2	168				
Benzo(k)fluoranthene	874	44.2	1,104	0	79.1	20.5	150				
Benzo(a)pyrene	1,040	44.2	1,104	0	94.2	34.4	179				

Original Page 9 of 14

Work Order: 1905255

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1905255-001AMS	SampType: MS			Units: µg/Kç	g-dry	Prep Da	te: 5/22/2 0)19	RunNo: 516	695	
Client ID: HB-2:C1	Batch ID: 24671					Analysis Date: 5/23/2019			SeqNo: 10	19527	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	884	44.2	1,104	0	80.1	11.8	140				
Dibenz(a,h)anthracene	909	44.2	1,104	0	82.4	17.3	156				
Benzo(g,h,i)perylene	792	44.2	1,104	0	71.7	24.9	119				
Surr: 2-Fluorobiphenyl	577		552.2		104	19.4	157				
Surr: Terphenyl-d14 (surr)	563		552.2		102	31.5	173				

Sample ID: 1905255-001AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 5/22/20	19	RunNo: 516	695	
Client ID: HB-2:C1	Batch ID: 24671					Analysis Da	te: 5/23/20	119	SeqNo: 10	19528	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	990	46.8	1,171	0	84.6	38.9	124	867.0	13.3	30	
2-Methylnaphthalene	1,010	46.8	1,171	0	86.5	42.8	151	876.1	14.5	30	
1-Methylnaphthalene	933	46.8	1,171	0	79.7	38.4	125	860.8	8.05	30	
Acenaphthylene	1,060	46.8	1,171	0	90.5	32.6	160	913.5	14.8	30	
Acenaphthene	1,000	46.8	1,171	0	85.5	31.7	126	868.0	14.2	30	
Fluorene	1,000	46.8	1,171	0	85.8	43.4	153	882.1	13.0	30	
Phenanthrene	992	46.8	1,171	0	84.7	23.8	135	849.2	15.5	30	
Anthracene	1,050	46.8	1,171	0	89.7	32.6	160	900.1	15.4	30	
Fluoranthene	1,110	46.8	1,171	0	94.9	28	144	961.7	14.5	30	
Pyrene	1,100	46.8	1,171	0	94.3	27.8	141	955.6	14.4	30	
Benz(a)anthracene	1,240	46.8	1,171	0	106	34.9	139	1,074	14.1	30	
Chrysene	1,000	46.8	1,171	0	85.6	45.2	146	856.5	15.7	30	
Benzo(b)fluoranthene	1,200	46.8	1,171	0	102	42.2	168	1,011	17.1	30	
Benzo(k)fluoranthene	1,020	46.8	1,171	0	87.5	20.5	150	874.0	15.9	30	
Benzo(a)pyrene	1,200	46.8	1,171	0	103	34.4	179	1,041	14.5	30	
Indeno(1,2,3-cd)pyrene	1,080	46.8	1,171	0	92.0	11.8	140	884.2	19.7	30	
Dibenz(a,h)anthracene	1,100	46.8	1,171	0	93.9	17.3	156	909.5	18.9	30	
Benzo(g,h,i)perylene	953	46.8	1,171	0	81.4	24.9	119	792.3	18.5	30	
Surr: 2-Fluorobiphenyl	652		585.5		111	19.4	157		0		
Surr: Terphenyl-d14 (surr)	635		585.5		108	31.5	173		0		

Original Page 10 of 14

Date: 5/24/2019

Seattle Center Skate Plaza

Work Order: 1905255

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1905255-001AMSD SampType: MSD Units: μg/Kg-dry Prep Date: 5/22/2019 RunNo: 51695

Client ID: **HB-2:C1** Batch ID: **24671** Analysis Date: **5/23/2019** SeqNo: **1019528**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Original Page 11 of 14

Date: 5/24/2019

Seattle Center Skate Plaza

Work Order: 1905255

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Sample Moisture (Percent Moisture)

Sample ID: 1905302-001ADUP SampType: DUP Units: wt% Prep Date: 5/21/2019 RunNo: 51593

Client ID: **BATCH** Batch ID: **R51593** Analysis Date: **5/21/2019** SeqNo: **1017298**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 8.27 0.500 8.530 3.12 20

Sample ID: 1905255-002ADUP SampType: DUP Units: wt% Prep Date: 5/21/2019 RunNo: 51593

Client ID: **HB-2:C2** Batch ID: **R51593** Analysis Date: **5/21/2019** SeqNo: **1017309**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 18.4 0.500 18.54 0.804 20

Original Page 12 of 14

Sample Log-In Check List

CI	ient Name:	SW	Work O	rder Nun	nber: 1905255		
Lo	gged by:	Mike Ridgeway	Date Re	ceived:	5/17/2019	9:12:00 AM	
<u>Cha</u>	in of Custo	ody					
1.	Is Chain of Co	ustody complete?	Yes	✓	No \square	Not Present	
2.	How was the	sample delivered?	Clien	<u>ıt</u>			
Log	<u>In</u>						
3.	Coolers are p	present?	Yes	✓	No 🗌	NA \square	
4.	Shipping cont	tainer/cooler in good condition?	Yes	✓	No 🗌		
5.		s present on shipping container/cooler? nments for Custody Seals not intact)	Yes		No 🗹	Not Required	
6.	Was an atten	npt made to cool the samples?	Yes	✓	No 🗌	NA 🗌	
7.	Were all item	s received at a temperature of >0°C to 10.0°C	* Yes	✓	No 🗆	NA \square	
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No 🗆		
10.	Are samples	properly preserved?	Yes	✓	No 🗌		
11.	Was preserva	ative added to bottles?	Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?	Yes		No 🗌	NA 🗸	
13.	Did all sample	es containers arrive in good condition(unbroken	n)? Yes	✓	No 🗌		
14.	Does paperwe	ork match bottle labels?	Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?	Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?	Yes	✓	No 🗌		
<u>Spe</u>	<u>cial Handli</u>	ing (if applicable)					
18.	Was client no	otified of all discrepancies with this order?	Yes		No \square	NA 🗸	
	Person I	Notified:	Date:				
	By Who	m:	Via: eMa	il 🗌 P	hone Fax [In Person	
	Regardir	ng:					
	Client In	structions:					
19.	Additional ren	marks:					_
ltem	nformation						
		Item # Temp °C					

 Cooler
 4.9

 Sample
 5.3

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 14 of 14

COC 1.2 - 2.22.17

Appendix B

Waste Disposal Information

A	NON-HAZARDOUS	1. Generator ID Number	2. Page 1 of 3. E	mergency Response Phone	4. Waste Tracking	Number
To the second	WASTE MANIFEST	N/A	Gon	(800)424-9300 erator's Site Address (if differen	t then mailing address)	Witte-CWM1
	5. Generator's Name and Mailir	SALES SEDENETOLWEAL	Gen	erator s Site Address (il dillerer	it than maining address)	
П	021 BROAD SEATTLE					
	Generator's Phone:	(200)694-7347			II O EDA ID Noorkee	
	6. Transporter 1 Company Nam	IN WASTE MANAGEMENT, INC.			U.S. EPA ID Number	3089462353
	7. Transporter 2 Company Nam				U.S. EPA ID Number	
Name of the least	UPRR	180 110				0001792910
	8. Designated Facility Name and	d Site Address CHEMICAL WAST	e managemen	VT, INC.	U.S. EPA ID Number	
		17020 CEDAR SPI			(714)	0088462353
	Facility's Phone:	643 ARLINGTON OR 9	1/815-8108			
	9. Waste Shipping Name	and Description		10. Containers No. Type	11. Total 12. Un Quantity Wt./Vo	
	1. MATERIAL N	IOT REGULATED BY D.O.T.			3	
ATOF					1400 F	
GENERATOR	2.	3	OR342077	*	,	
- GE	4.			*		
No.						
albert St	3.					
in the second						
Splindpan	4.					
The state of the s						
and the second	13. Special Handling Instructions	and Additional Information HYDROCAREO	N EXCAVATED	SOIL		, i
		200 Aug 1 0 M 200 Aug 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		77.0		,
	•	*				
	14. GENERATOR'S/OFFEROR'S	S CERTIFICATION: I hereby declare that the contents o	f this consignment are fully	and accurately described above	re by the proper shipping nar	ne, and are classified, packaged,
	Generator's/Offeror's Printed/Typ	· · · · · · · · · · · · · · · · · · ·	Signature	4 4	mental regulations.	Month Day Year
*	The LA				Contract Con	- 060719
INT'L	15. International Shipments	Import to U.S.	Export from U.S.	Port of entry/exit:		. , ,
	Transporter Signature (for exports 16. Transporter Acknowledgment		¥1	Date leaving U.S.:		1
TRANSPORTER	Transporter 1 Printed/Typed Nam	e Un - I do Pari	Signature	11/11/11	and Management of the Control of the	Month Day Year
NSP(Transporter 2 Printed/Typed Nam	HIE AUTIN	Signature	J. Parlas	Port Lucian	Month Day Year
TRA	Transportor 2, Timod Typod Trans					Monin Day Teal
A L	17. Discrepancy					
П	17a. Discrepancy Indication Space	e Quantity Type	[Residue	Partial Rejection	Full Rejection
П			Ma	nifest Reference Number:		
-	7b. Alternate Facility (or Generate	or)	ma		U.S. EPA ID Number	
					1	
_	Facility's Phone: 7c. Signature of Alternate Facility	(or Generator)				Month Day Year
AND						
3			The state of			
		perator: Certification of receipt of materials covered by t		d in Item 17a		
P	rinted/Typed Name	4	Signature .			Month Day Year

Important Information

About Your Environmental Site Assessment/Evaluation Report

ENVIRONMENTAL SITE ASSESSMENTS/EVALUATIONS ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

This report was prepared to meet the needs you specified with respect to your specific site and your risk management preferences. Unless indicated otherwise, we prepared your report expressly for you and for the purposes you indicated. No one other than you should use this report for any purpose without first conferring with us. No one is authorized to use this report for any purpose other than that originally contemplated without our prior written consent.

The findings and conclusions documented in this site assessment/evaluation have been prepared for specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in this area. The conclusions presented are based on interpretation of information currently available to us and are made within the operational scope, budget, and schedule constraints of this project. No warranty, express or implied, is made.

OUR REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

Our environmental site assessment is based on several factors and may include (but not be limited to) reviewing public documents to chronicle site ownership for the past 30, 40, or more years; investigating the site's regulatory history to learn about permits granted or citations issued; determining prior uses of the site and those adjacent to it; reviewing available topographic and real estate maps, historical aerial photos, geologic information, and hydrologic data; reviewing readily available published information about surface and subsurface conditions; reviewing federal and state lists of known and potentially contaminated sites; evaluating the potential for naturally occurring hazards; and interviewing public officials, owners/operators, and/or adjacent owners with respect to local concerns and environmental conditions.

Except as noted within the text of the report, no sampling or quantitative laboratory testing was performed by us as part of this site assessment. Where such analyses were conducted by an outside laboratory, Shannon & Wilson relied upon the data provided and did not conduct an independent evaluation regarding the reliability of the data.

CONDITIONS CAN CHANGE.

Site conditions, both surface and subsurface, may be affected as a result of natural processes or human influence. An environmental site assessment/evaluation is based on conditions that existed at the time of the evaluation. Because so many aspects of a historical review rely on third-party information, most consultants will refuse to certify (warrant) that a site is free of contaminants, as it is impossible to know with absolute certainty if such a condition exists. Contaminants may be present in areas that were not surveyed or sampled or may migrate to areas that showed no signs of contamination at the time they were studied.

Unless your consultant indicates otherwise, your report should not be construed to represent geotechnical subsurface conditions at or adjacent to the site and does not provide sufficient information for construction-related activities. Your report also should not be used following floods, earthquakes, or other acts of nature; if the size or configuration of the site is altered; if the location of the site is modified; or if there is a change of ownership and/or use of the property.

INCIDENTAL DAMAGE MAY OCCUR DURING SAMPLING ACTIVITIES.

Incidental damage to a facility may occur during sampling activities. Asbestos and lead-based paint sampling often require destructive sampling of pipe insulation, floor tile, walls, doors, ceiling tile, roofing, and other building materials. Shannon & Wilson does not provide for paint repair. Limited repair of asbestos sample locations is provided. However, Shannon & Wilson neither warranties repairs made by our field personnel, nor are we held liable for injuries or damages as a result of those repairs. If you desire a specific form of repair, such as those provided by a licensed roofing contractor, you need to request the specific repair at the time of the proposal. The owner is responsible for repair methods that are not specified in the proposal.

READ RESPONSIBILITY CLAUSES CAREFULLY.

Environmental site assessments/evaluations are less exact than other design disciplines because they are based extensively on judgment and opinion and there may not have been any (or very limited) investigation of actual subsurface conditions. Wholly unwarranted claims have been lodged against consultants. To limit this exposure, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses may appear in this report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

Consultants cannot accept responsibility for problems that may develop if they are not consulted after factors considered in their reports have changed or conditions at the site have changed. Therefore, it is incumbent upon you to notify your consultant of any factors that may have changed prior to submission of the final assessment/evaluation.

An assessment/evaluation of a site helps reduce your risk but does not eliminate it. Even the most rigorous professional assessment may fail to identify all existing conditions.

ONE OF THE OBLIGATIONS OF YOUR CONSULTANT IS TO PROTECT THE SAFETY, HEALTH, PROPERTY, AND WELFARE OF THE PUBLIC.

If our environmental site assessment/evaluation discloses the existence of conditions that may endanger the safety, health, property, or welfare of the public, we may be obligated under rules of professional conduct, statutory law, or common law to notify you and others of these conditions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

APPENDIX B

NOISE ANALYSIS REPORT

June 2019 Appendix B

5309 Shilshole Avenue, NW Suite 200 Seattle, WA 98107 206.789.9658 phone 206.789.9684 fax

memorandum

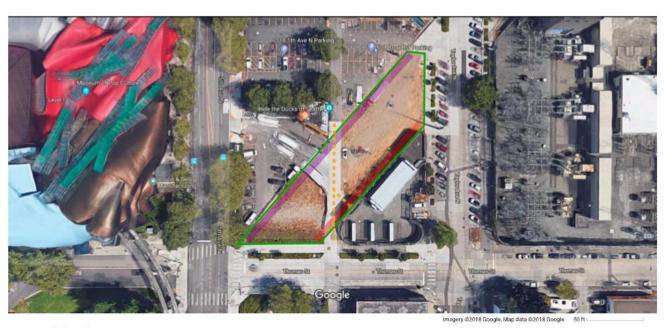
date December 18, 2018

to Jill Crary and Julia Levitt, Seattle Center

cc Molly Adolfson and Claire Hoffman, ESA

from Aaron Booy, Jessica Conquest, and Chris Sanchez, ESA

subject Proposed Skatepark at Seattle Center - Noise Analysis Report


Introduction

This memorandum presents the results of a noise monitoring survey conducted in October of 2018 to identify potential noise impacts associated with development of a new skatepark in Uptown. To allow for development of the Seattle Center Arena Renovation Project, the Seattle City Council approved agreements that allow Oak View Group (OVG), a private developer, to demolish the Seattle Center skatepark. The agreement between the City and OVG provides for \$500,000 of funding toward relocating the skatepark. The City and City Council, through collaboration with the Seattle Center, have identified a new skatepark site located across the street from the Seattle Center campus on a portion of the Broad Street right-of-way (Figure 1).

The proposed skatepark would be located on a portion of the Broad Street right-of-way that has been closed to vehicles since 2014. The vacant right-of-way is at approximately 319 6th Avenue North, Seattle, WA 98109 and is surrounded by commercial and public utility uses that are zoned for Seattle Mixed Uptown (SM-UP 160 (M)). Development of the site into a skatepark would result in a change of use from vacant land to a recreation facility that would be used from dawn to dusk; therefore, increased noise may occur at the site. Noise-sensitive receptors nearest the project site are hotels (Hyatt House and Best Western Executive Inn) and outdoor gathering spaces associated with the Space Needle (both of which are approximately 200 feet to the southwest of the proposed site).

To analyze the potential for noise impacts from a new skatepark, monitoring was conducted at the proposed site (to document existing conditions) and at two existing similar skateparks to establish reference noise levels in order to predict future conditions. The skatepark at Seattle Center was closed and was unavailable for noise monitoring, so two existing skateparks with similar conditions were monitored. This analysis will support project permitting and environmental compliance under the Washington State Environmental Policy Act (SEPA).

Figure 1. Proposed Site

— Site boundary

--- Access to be preserved

Approximate location of underground Seattle City Light infrastructure

Design along SCL Annex wall must be coordinated with SCL for safety/security

Regulatory Framework

This noise analysis is based on the City of Seattle's Noise Ordinance (Seattle Municipal Code [SMC] 25.08.410). Table 1 lists the exterior sound level limits described in the SMC, which are based on the zoning district of receiving property.

Table 1. City of Seattle Exterior Sound Limits [dB(A)]

District of Sound Source	Zoning District of Receiving Property		
	Residential Day / Night	Commercial	Industrial
Residential	55 / 45	57	60
Commercial	57 / 47	60	65
Industrial	60 / 50	65	70

Source: SMC Chapter 25.08.410

Notes:

- The ordinance provides that noise limits are to be based on the Leq during the measurement interval, using a minimum measurement interval of 1 minute for a constant sound source, or a 1-hour measurement for a non-continuous sound source.
- Daytime represents the hours between 7 a.m. and 10 p.m. on weekdays and between 9 a.m. and 10 p.m. on weekends and legal holidays.

Methodology

Noise is defined as unwanted sound. The manner in which people respond to noise depends on its composition, intensity, frequency, and duration. The loudness of sound as interpreted by the human ear depends on fluctuations in air pressure. Sound is highly variable from the quietest to loudest sounds perceived. Noise impacts to humans are measured in terms of air pressure, expressed in decibels or dB. Because of the variability in the loudness of sound, changes in sound (noise) are measured on a logarithmic scale. Because noise is measured on a logarithmic scale, an

Noise level measurements:

The *Hourly Equivalent Sound Level* [*Leq*(*h*)], which describes a receiver's cumulative noise exposure from all events over a 1-hour period.

increase in noise of 10 dB would be considered twice as loud. A 3 dB change is a barely perceivable difference for the human ear.

When considering the effects that noise has on an individual, it is important to take into account the frequency response of the human ear, which has increased sensitivity to certain frequencies of sound - particularly lower frequencies. To account for the human ear sensitivity, the A-weighting scale, which best estimates the way in which the human ear responds, is commonly used. A decibel on the A-weighted scale is referred to as dB(A).

To analyze the potential for noise impacts from a new skatepark, monitoring was conducted at the proposed site (to document existing conditions) and at two existing nearby skateparks (see Figure 2) to establish reference noise levels from skate park activity for the purposes of predicting future conditions on and around the project site. The data was then analyzed to determine conformance with the SMC (Table 1).

Figure 2. Noise Monitoring Locations

Existing noise levels were measured using a long-term noise monitoring meter (Larson Davis SoundTrack LxT) for approximately three days (the afternoon of Friday, October 19th through the afternoon of Monday, October 22nd) to capture typical use conditions at all three sites during the weekend periods when skate park use would be most active. It was dry (i.e., no precipitation) throughout the monitoring period. All of the meters were placed on trees at similar heights and at similar setbacks from skatepark activity (when applicable). The meter deployed at the Proposed Skatepark site was located in a street tree approximately 25 feet from the nearest travel lane along Taylor Avenue N (Figure 3). The meter deployed at the Jefferson Skatepark was located in a tree approximately 30 feet east of the skatepark and 16 feet northwest of the Jefferson Park Gold Driving Range (Figure 4). The closest street to the Jefferson Skatepark meter was Beacon Avenue S, located approximately 335 feet to the east, and parking lot areas for Jefferson Park were located approximately 160 feet to the northeast of the meter. The meter deployed at the Lower Woodland Skatepark was located on the trunk of a tree approximately 36 feet to the west of the skatepark (Figure 5). The closest street to the Lower Woodland Skatepark meter was Greenlake Way N, located approximately 595 feet to the east, and parking lot areas for Lower Woodland Park were located approximately 300 feet to the north of the meter. Meters were located such that there were no hills, walls, or other barriers between the meters and the skate parks that could attenuate monitored noise levels.

Map Area Republican Street Harrison Street Proposed Skatepark Monitoring Site Space Needle Executive Inn Thomas Street Hyatt House John Street Denny Way

Figure 3. Proposed Skatepark Monitoring Location

Figure 4. Jefferson Skatepark Monitoring Location

Map Area Woodland Park Lower Woodland Monitoring Site

Figure 5. Lower Woodland Skatepark Monitoring Location

Affected Environment

This section documents the existing noise conditions monitored at the Proposed Skatepark Monitoring Site. Table 2 provides the average of daytime hourly equivalent sound levels [Leq(h)] measured on four consecutive days (October 19 thru October 22). For each day, the Leq(h) levels describe the cumulative noise exposure from all events during the daytime hours (7 a.m. to 10 p.m. on weekdays and 9 a.m. to 10 p.m. on weekends). Appendix A (Tables A-1 through A-4) document the Leq(h) levels for each one-hour period during both daytime and nighttime hours as measured at the Proposed Skatepark Monitoring site.

Noise monitoring data collected on Saturday contained continuous elevated noise levels of 69 to 77 dB(A) from an anomalous noise source or event between 9:00 and 10:00 AM¹. Consequently, these data points were not considered in the calculation of the existing average daytime ambient noise level to conservatively characterize

Table 2. Noise Measurements (Average Daytime dB(A) Leq(h) Sound Levels), Proposed Skatepark Site

Day	Average Daytime Leq
Friday 10/19/18	59.9
Saturday 10/20/18	67.1
Sunday 10/21/18	58.3
Monday 10/22/18	58.4

Source: Measured by ESA

the project site environment on Saturday. Disregarding the data points for this two-hour period on Saturday morning, the existing daytime noise environment was consistently between 57 and 61 dB(A) Leq(h). Table 2 presents the hour by hour monitoring data collected each day of the monitoring period at the project site.

Potential for Impacts

This section documents the existing noise conditions at the two existing, operating skateparks: Lower Woodland Skatepark and Jefferson Skatepark. The Skatepark at Seattle Center was permanently closed and therefore unavailable for monitoring. These two existing Skateparks were chosen for monitoring because they were identified by City staff and common online review forums as popular, well used skateparks within City of Seattle parks. Lower Woodland and Jefferson Skateparks were also selected because they are setback from adjacent

¹

¹ The average daytime Leq was approximately 9 to 10 dB(A) higher on Saturday October 20 than on the other three days. This was due to measured noise conditions at 77 dB(A) Leq(h) during the 9 AM and 10 AM hours on Saturday morning. Review of the data log for these hours shows that a noise source (or sources) generated noise measured between 72 dB(A) and 88 dB(A) from 8:28 to 9:15AM, and then again from 79 to 81 dB(A) from 9:30 AM to 10:02 AM. The noise meter did not record audio associated with these noise events, so it is uncertain what activity created the increased noise. However, the measured noise levels were generally continuous at one dB(A) level for intervals of 3 minutes or more, suggesting that noise was likely generated by a motor vehicle or other piece of machinery generating steady-state noise located in close proximity to the noise meter.

arterial roadways, minimizing the influence of other dominant environmental noise sources to the greatest extent feasible. Both of these existing skatepark locations provided opportunity for secure placement of the noise monitoring equipment.

Table 3 provides existing average daytime sound level (Leq) at a distance of approximately 30 feet from skate park activity. These data indicate that noise levels at Jefferson Skatepark were consistently 2 to 4 dB(A) greater than at Lower Woodland Skatepark likely as the result of higher activity levels. Appendix B (Tables B-1 through B-4) document the existing hourly equivalent sound level [Leq(h)].

Table 3. Comparable Skatepark Noise Average Daytime Leq Measurements

Day	Lower Woodland Skatepark Leq	Jefferson Skatepark Leq
Friday 10/19/18	55.8	61.8
Saturday 10/20/18	58.4	61.3
Sunday 10/21/18	58.5	61.0
Monday 10/22/18	55.8	61.8

Source: Measured by ESA

Summary of Findings

The Proposed Skatepark site is surrounded by commercial and public utility uses that are zoned for Seattle Mixed Uptown (SM-UP 160 (M)); this same zoning designation extends across the Proposed Skatepark Site. The closest existing noise sensitive receivers to the Proposed Skatepark site are the Hyatt House hotel (201 5th Avenue North), the Best Western Executive Inn hotel (200 Taylor Ave N, Seattle, WA 98109), and outdoor gathering spaces associated with the Space Needle and Seattle Center are closest to the Proposed Skatepark, located approximately 200 feet to the southwest. The hotels and are located further away, setback 240 or more feet from the proposed site. Consistent with the City's Noise Ordinance, zoning district for all receiving properties is commercial because the zoning designation is SM-UP 160 (M).

At the Proposed Skatepark monitoring site, and at both existing skatepark monitoring sites, the measured noise environment was generally at or approaching the 60 dB(A) limit set by SMC (between commercially zoned properties) (Table 1). At all locations, occasional hourly Leq measurements exceeded the 60 dB(A) limit. For example, at the Proposed Skatepark monitoring site, measured noise was at 64 dB(A) Leq at 8:00 AM on Friday morning. On Friday evening, noise conditions at Jefferson Park were measured at 66 dB(A) Leq during 8:00 PM and 9:00 PM hours. Monitored noise environments at all three locations were influenced by a variety of noise

sources, including traffic noise from surrounding roadways, other park and pedestrian uses, and overhead airplanes.

Table 4 provides the average daytime Leq at the Proposed Skatepark location as well as the two existing skateparks.

Table 4. Existing Noise Measurements (Leg)

Day	Proposed Skatepark Site Leq	Lower Woodland Skatepark Leq	Jefferson Skatepark Leq
Friday 10/19/18	59.9	55.8	60.2
Saturday 10/20/18	69.0	58.2	61
Sunday 10/21/18	58.3	58	60.6
Monday 10/22/18	59.9	55.8	60.2

Source: Measured by ESA

Based on review of the existing noise environments between the Proposed Skatepark location and the comparison existing skateparks, it is not anticipated that future use of the Seattle Center Skatepark, once developed and operational, would significantly alter the existing noise environment surrounding the proposed location. The noise levels at the Lower Woodland site were generally lower than the Proposed Skatepark Monitoring Site. The noise levels at the Jefferson Skatepark were generally equivalent to the Proposed Skatepark Monitoring Site. The noise environments at both of the existing skateparks are influenced by multiple noise sources in addition to skatepark activities. With consideration of these additional sources, and the average noise levels measured adjacent to both skateparks generally occurring at or below the 60 dB(A) Leq threshold, and the distance of the closest receiving properties being 200 to 240 feet away, we do not anticipate a potential for adverse noise impacts or exceedances of SMC limits. Assuming that all of the noise recorded at existing skateparks was a result of skatepark activity, the noise level experience at the nearest sensitive receptors (200 feet or greater away from the Proposed Skatepark location) would be at or below 50 dB(A). The City's exterior sound level limits regulate only the sound generated by a specific activity /use on the 'sound source' property as experienced by adjacent properties, and are not cumulative with other existing surrounding noise.

APPENDIX A

Noise Measurements for Proposed Skatepark Site

Table A-1. Noise Measurements for Friday October 19, 2018 [Leq(h)]

Day	Time of Day	Leq(h)	
	Daytime		
	4:00pm	61	
	5:00pm	61	
Friday 10/19/18	6:00pm	59	
	7:00pm	60	
	8:00pm	58	
	9:00pm	60	
	10:00pm	58	
	Nighttime		
	11:00pm	57	

Source: Measured by ESA

Table A-2. Noise Measurements for Saturday October 20, 2018 [Leq(h)]

Day	Time of Day	Leq(h)
	Nighttime	
	12:00 AM	57
	1:00 AM	55
	2:00 AM	55
	3:00 AM	54
	4:00 AM	55
	5:00 AM	57
	6:00 AM	63
	7:00 AM	59
Saturday	8:00 AM	77
10/20/18	Day	time
	9:00 AM	77
	10:00 AM	69
	11:00 AM	60
	12:00 PM	59
	1:00 PM	59
	2:00 PM	59
	3:00 PM	60
	4:00 PM	59
	5:00 PM	58
	6:00 PM	59
	7:00 PM	61
	8:00 PM	58
	9:00 PM	58
	10:00 PM	57
	Nigh	ttime
	11:00 PM	57

Source: Measured by ESA

Table A-3. Existing Noise Measurements for Sunday October 21, 2018 [Leq(h)]

Day	Time of Day	Leq(h)	
	Nighttime		
	12:00 AM	57	
	1:00 AM	56	
	2:00 AM	55	
	3:00 AM	54	
	4:00 AM	60	
	5:00 AM	54	
	6:00 AM	55	
	7:00 AM	58	
Sunday	8:00 AM	58	
10/21/18	Day	time	
	9:00 AM	57	
	10:00 AM	60	
	11:00 AM	57	
	12:00 PM	58	
	1:00 PM	57	
	2:00 PM	59	
	3:00 PM	59	
	4:00 PM	59	
	5:00 PM	59	
	6:00 PM	59	
	7:00 PM	57	
	8:00 PM	56	
	9:00 PM	59	
	10:00 PM	57	
	Nigh	ttime	
	11:00 PM	56	

Source: Measured by ESA

Table A-4. Existing Noise Measurements for Monday October 22, 2018 [Leq(h)]

Day	Time of Day	Leq(h)	
	Nighttime		
	12:00 AM	55	
	1:00 AM	53	
	2:00 AM	53	
	3:00 AM	53	
	4:00 AM	56	
	5:00 AM	57	
	6:00 AM	57	
Monday	Day	ytime	
10/22/18	7:00 AM	62	
	8:00 AM	64	
	9:00 AM	60	
	10:00 AM	58	
	11:00 AM	58	
	12:00 PM	59	
	1:00 PM	57	
	2:00 PM	60	
	3:00 PM	59	

APPENDIX B

Comparable Skatepark Noise Measurements

Table B-1. Noise Measurements for Friday October 19, 2018 [Leq(h)]

Day	Time of Day	Lower Woodland Skatepark Leq(h)	Jefferson Skatepark Leq(h)
		Daytime	
	5:00pm	N/A	63
Friday 10/19/18	6:00pm	62	63
	7:00pm	56	64
	8:00pm	56	66
	9:00pm	56	66
	10:00pm	55	63
		Nighttime	
	11:00pm	54	59

Table B-2. Noise Measurements for Saturday October 20, 2018 [Leq(h)]

Day	Time of Day	Lower Woodland Skatepark Leq(h)	Jefferson Skatepark Leq(h)		
		Nighttime			
	12:00 AM	51	55		
	1:00 AM	49	52		
	2:00 AM	48	51		
	3:00 AM	47	53		
	4:00 AM	49	55		
	5:00 AM	51	56		
	6:00 AM	54	58		
	7:00 AM	55	59		
Saturday	8:00 AM	58	58		
10/20/18	Daytime				
	9:00 AM	57	59		
	10:00 AM	59	61		
	11:00 AM	57	59		
	12:00 PM	58	60		
	1:00 PM	58	60		
	2:00 PM	60	62		
	3:00 PM	62	61		
	4:00 PM	61	62		
	5:00 PM	59	60		
	6:00 PM	58	62		
	7:00 PM	54	62		
	8:00 PM	54	63		
	9:00 PM	53	63		
	10:00 PM	53	63		
	Nighttime				
	11:00 PM	53	57		

Table B-3. Noise Measurements for Sunday October 21, 2018 [Leq(h)]

Day	Time of Day	Lower Woodland Skatepark Leq(h)	Jefferson Skatepark Leq(h)		
		Nighttime			
	12:00 AM	52	55		
	1:00 AM	50	54		
	2:00 AM	49	52		
	3:00 AM	44	51		
	4:00 AM	46	50		
	5:00 AM	45	53		
	6:00 AM	50	54		
	7:00 AM	48	55		
Sunday	8:00 AM	50	57		
10/21/18	Daytime				
	9:00 AM	55	58		
	10:00 AM	55	59		
	11:00 AM	57	59		
	12:00 PM	58	60		
	1:00 PM	60	60		
	2:00 PM	62	62		
	3:00 PM	61	61		
	4:00 PM	62	61		
	5:00 PM	61	62		
	6:00 PM	54	61		
	7:00 PM	54	64		
	8:00 PM	54	61		
	9:00 PM	51	62		
	10:00 PM	52	61		
	Nighttime				
	11:00 PM	48	58		

Table B-4. Noise Measurements for Monday October 22, 2018 [Leq(h)]

Day	Time of Day	Lower Woodland Skatepark Leq(h)	Jefferson Skatepark Leq(h)	
		Nighttime		
	12:00 AM	42	53	
	1:00 AM	41	49	
	2:00 AM	36	46	
	3:00 AM	39	45	
	4:00 AM	44	51	
	5:00 AM	45	56	
Monday	6:00 AM	50	54	
10/22/18	Daytime			
10/22/10	7:00 AM	52	54	
	8:00 AM	52	57	
	9:00 AM	52	55	
	10:00 AM	53	59	
	11:00 AM	52	56	
	12:00 PM	53	57	
	1:00 PM	55	59	
	2:00 PM	N/A	59	

APPENDIX C

HISTORIC AND CULTURAL PRESERVATION MEMO

June 2019 Appendix C

5309 Shilshole Avenue NW Suite 200 Seattle, WA 98107 206.789.9658 phone 206.789.9684 fax

memorandum

date February 14, 2019

to Julia Levitt, Seattle Center

cc Claire Hoffman, ESA

from Jenny Dellert, ESA

subject Historic and Cultural Preservation

a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers located on or near the site? If so, specifically describe.

There are no buildings or structures on the project site over 45 years old, and no recorded cultural resources listed on or determined eligible for listing on the National Register of Historic Places (NRHP), Washington Heritage Register (WHR), King County Landmarks List, or City of Seattle Landmarks List within the project site. The SCL Broad Street Substation and Annex are adjacent to the project site, with buildings and switchyard dating to ca. 1949–1951 (BOLA, 2017). The Broad Street Substation is also a Seattle landmark (Pratt and Howard, 2018a, 2018b). The Annex is directly adjacent to the project site, while the substation is across Taylor St to the east.

Seattle Center is approximately 1,500 feet west of the project site. KeyArena (formerly known as the Century 21-World's Fair Coliseum) was constructed in 1961 for the World's Fair and designed by Paul Thiry (ESA, 2018b; Lazzaretto et al., 2017). The building is currently being renovated (ESA, 2018b). KeyArena was listed in the WHR on March 8, 2018 and is a designated Seattle Landmark (ESA, 2018b).

Additional landmarked buildings and structures in Seattle Center are noted in Table 1 (City of Seattle, 2019; ESA, 2018b; Pratt and Howard, 2018a, 2018b).

TABLE 1
ADDITIONAL CITY OF SEATTLE LANDMARKS NEAR PROJECT AREA

Name	Designated Year
Bressi Garage	2017
Horiuchi Mural	2004
Kobe Bell (Friendship Bell)	2004
Monorail and Monorail Cars	2003
Northwest Rooms, International Fountain Pavilion, and International Plaza	2013
Pacific Science Center	2017

Seattle Center House (Armory)	2010
Space Needle	1998

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.

The Washington State Department of Archaeology and Historic Preservation (DAHP) Statewide Predictive Model, used to assess the risk of encountering precontact archaeological resources, classifies the project site as Very High Risk (DAHP, 2019a). This classification is likely based on the site's proximity to Lake Union, Smith Cove, and Elliott Bay. However, the Predictive Model does not take into account recent land modifications.

ESA conducted background research using a 0.5-mile radius from the project site. According to the DAHP WISAARD online database (i.e., the Washington Information System for Architectural & Archaeological Records Data; DAHP, 2019c), there are no recorded archaeological sites or cemeteries within or adjacent to the project site. The nearest recorded resources are approximately 0.1 mile northeast of the project site, and include two archaeological sites (SDOT Maintenance Yard Site 45KI958 [a multi-component site with precontact lithic material and historic-period commercial and residential properties and debris concentration] and Harrison Street Regrade Site 45KI1146 [historic road, public works, and structure with debris]) (Elliott, 2013; Valentino, 2015a; Van Galder, 2010). Site 45KI958 has been recommended Not Eligible for listing on the NRHP (Valentino, 2015b). Site 45KI1146 has been determined Not Eligible for listing on the NRHP (Sterner, 2013).

Approximately 0.47 mile northwest of the project site are two additional archaeological sites (the Northern Pacific Railroad belt line Westlake Ave. N Segment Site 45KI502 [historic railroad property] and the Queen Anne Counterbalance Track Site 45KI1185 [historic railroad property]) (Cole, 2000; Scott, 2014). Neither site has been formally evaluated.

Approximately 0.3 mile southeast of the project site is the Seattle Cemetery (also known as Denny Park 45KI85, which was listed on the WHR on December 9, 1970) (Corley, 1969a; DAHP, 2019a). There are seven additional register-listed properties within 0.5 mile of the project site, including the Seattle, Chief of the Suquamish Statue (45KI574), Century 21-Washington State Coliseum (also known as KeyArena or Seattle World's Fair-Coliseum [45KI1379]), the Queen Anne Post Office (45KI1026), the Hull Building (45KI73), the Bell Apartments (45KI95), the Barnes Building (45KI92), and the Windham Apartments (45KI742) (Barnes, 1974; Corley, 1969b; Howard and Johnson, 2010; Krafft, 1982; Kreissman, 1983; Lawrence and Sokol Furesz, 2006; Lazzaretto et al., 2017).

A single windshield survey was conducted of the project site (Courtois et al., 1999). The investigation, which was performed in advanced of a regional link light rail project, identified no cultural resources within the project site.

Within 0.5 mile of the project site, 19 additional cultural resources investigations have been conducted. The studies consisted of historic property surveys and surface and subsurface reconnaissance, including testing and data recovery, as well as archaeological monitoring. The projects ranged from small cellular tower replacements to large-scale transportation improvement endeavors (Bartoy, 2011; Blake and Huber, 2011; Bundy and Walker Gray, 2008; Dellert et al., 2013; Dugas and Robbins, 2001; Earley, 2018; Forsman et al., 1997; Gillespie et al., 2008; Gillis et al., 2005; Miss et al., 2008; NWAA, 2006; Pinyerd, 2013; Piper and Rinck, 2014; Rooke et al.,

2010; Sullivan, 2009; Valentino, 2015b; Wegener et al., 2010; Witt, 2008). A historic landmark study was conducted for Seattle Center in 2013 (Artifacts Consulting, Inc. and HistoryLink.org, 2013). Several buildings and structures included in Seattle Center have been landmarked and/or are historically significant/character-defining elements that are near the proposed Skateplaza location, including the Space Needle, the Armory, and portions of the Monorail. Additional Seattle landmarks within Seattle Center include KeyArena, the Pacific Science Center, Kobe Bell, and Horiuchi Mural (see Table 1 above) (Artifacts Consulting, Inc. and HistoryLink.org, 2013; ESA, 2018; Pratt and Howard, 2018a, 2018b).

There is evidence of Native American occupation and land use in the general vicinity of the project site, along the shorelines of Elliott Bay and Smith Cove, and a former prairie area in between the two waterbodies (Hilbert et al., 2001).

Historic and modern aerial photographs from 1936 to 2002 show the project site as an active roadway, and development increased in the vicinity (NETR Online, 1936, 1968, 1969, 1980, 2002). By the 2014, the roadway was closed and repurposed as a right-of-way (NETR Online, 2015).

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archeology and historic preservation, archaeological surveys, historic maps, GIS data, etc.

Geographic Information System (GIS) data layers for archaeological sites, cemeteries, historic properties, register-listed properties, cultural resource surveys, and the Predictive Model were reviewed on DAHP's WISAARD database (DAHP, 2019b). Ethnographic sources and historic-period maps and aerial photographs were also examined (Anderson, 1907; GLO, 1866; Hilbert et al., 2001; Kroll, 1912, 1926; Metsker, 1936; NETR Online, 1936, 1968, 1969; Sanborn, 1888, 1893, 1905, 1905-1950; USGS, 1903, 1908, 1909, 1911, 1922, 1936, 1955, 1964, 1969; USSG 1856, 1863).

Local historic register information was reviewed online via the King County Landmarks List (King County HPP, 2018) and City of Seattle Landmarks List (2019), and the historic landmark study for Seattle Center was also reviewed (Artifacts Consulting, Inc. and HistoryLink.org, 2013). Additionally, the historic context and a historic resources study of the Uptown area were also reviewed (Pratt and Howard, 2018a, 2018b).

The historic documentation for the Broad Street Substation and Annex and the Environmental Impact Statement (EIS) for the nearby Seattle Center Arena project were also reviewed (BOLA, 2017; ESA, 2018b).

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.

The project site would be excavated to approximately 5 feet below ground surface (bgs). The site is currently a right-of-way and formerly a roadway. Road grade prism and fill likely extends beyond the proposed excavation depth. Should the depth of road prism and fill in the bore logs measure deeper than 5 feet bgs, it is unlikely that intact cultural resources would be encountered during excavation.

As a BMP, an Inadvertent Discovery Plan (IDP) should be prepared for use during project construction. The IDP will identify the procedures and protocols to follow in the event of an archaeological resources discovery. The IDP will include pre-construction briefings for construction personnel and on-call response if a discovery is made

during construction. In the event that cultural resources are inadvertently discovered, construction would be temporarily halted in the immediate vicinity of the discovery and Seattle Center, DAHP, and affected tribes would be notified. Mitigation and/or avoidance measures would be coordinated with Seattle Center, DAHP, and other stakeholders.

Sources Consulted

- Anderson Map Company (Anderson). 1907. Plat Book of King County, Washington. Available: http://www.historicmapworks.com/. Accessed: February 1, 2019.
- Artifacts Consulting, Inc. and HistoryLink.org. 2013. Seattle Center Historic Landmark Study. Artifacts Consulting, Inc. and HistoryLink.org. Prepared for City of Seattle, Seattle Center Redevelopment Department, Seattle.
- Barnes, Brooke A. 1974. Barnes Building (45KI92) National Register of Historic Places Inventory-Nomination Form. Brooke Barnes (owner), Kirkland, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Bartoy, Kevin M. 2011. SR 99: S. Hudson Street to Ward Street Automated Viaduct Closure Gates Project. Washington State Department of Transportation. Submitted to Department of Archaeology and Historic Preservation, Olympia, WA.
- Blake, Karry L., and Edgar K. Huber. 2011. Archaeological Resources Monitoring of Geotechnical Borings from Harrison Street to Thomas Street, SR 99 Alaskan Way Viaduct Replacement Project, Seattle, Washington. Statistical Research, Inc. Submitted to Washington State Department of Transportation, Seattle, WA.
- BOLA (BOLA Architecture + Planning). 2017. Landmark Nomination: Seattle City Light Broad Street Substation, Seattle. May 9, 2017.
- Bundy, Barbara E., and Connie Walker Gray. 2008. Cultural Resources Assessment Alaskan Way Viaduct & Seawall Replacement Program Battery Street Tunnel Fire and Safety Upgrades, Seattle, King County, Washington. Washington State Department of Transportation.
- City of Seattle. 2019. Seattle Landmarks List. Available: https://www.seattle.gov/neighborhoods/programs-and-services/historic-preservation/landmarks/landmarks-map. Accessed: February 1, 2019.
- Cole, S. 2000. Northern Pacific Railroad belt line Site (45KI502) [Westlake Ave. N segment] State of Washington Archaeological Site Inventory Form. Northwest Archaeological Associates, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Corley, Margaret A. 1969a. Denny Park (45KI85) National Register of Historic Places Inventory-Nomination Form. Seattle Historical Society, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Corley, Margaret A. 1969b. Bell Apartments (45KI95) National Register of Historic Places Inventory-Nomination Form. Seattle Historical Society, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Courtois, Shirley L., Katheryn H. Krafft, Catherine Wickwire, James C. Bard, and Robin McClintock. 1999. Central Link Light Rail Transit Project Seattle, Tukwila, and SeaTac, Washington-Final Technical Report Historic and Prehistoric Archaeological Sites, Historic Resources, Native American Traditional Cultural Properties, and Paleontological Sites. Courtois & Associates, Seattle, WA and CH2M Hill, Inc., Bellevue, WA. Prepared for Central Puget Sound Regional Transit Authority, Seattle, WA.
- DAHP (Department of Archaeology and Historic Preservation). 2019a. Seattle Cemetery-Cemetery Report. Available: http://www.dahp.wa.gov/. Accessed: February 1, 2019.
- DAHP. 2019b. Statewide Predictive Model. Available: http://www.dahp.wa.gov/. Accessed: February 1, 2019.
- DAHP. 2019c. WISAARD (Washington Information System for Architectural & Archaeological Records Data). Available: https://fortress.wa.gov/dahp/wisaardp3/.

- Dellert, Jenny, Lynn Compas, Amanda Bennett, and Heather Lee Miller. 2013. Addendum to Cultural Resources Discipline Report for the Aurora RapidRide E-Line Project. Historical Research Associates, Inc., Seattle, WA. Submitted to King County Metro, Seattle, WA.
- Dugas, Amy E., and Jeffrey R. Robbins. 2001. Cultural Resource Monitoring for the Bellora Condominium Project, Seattle, King County, Washington. Compliance Archaeology, LLC, Seattle, WA. Prepared for Murray Franklyn Companies, Bellevue, WA.
- Earley, Amber. 2018. Archaeological Monitoring of Geotechnical Boreholes for the South Lake Union Block 38 Development Project. Perteet Engineering, Seattle, WA. Prepared for EA Engineering, Science, and Technology, Seattle, WA.
- Elliott, Patrick. 2013. Harrison Street Regrade Site (45KI1146) State of Washington Archaeological Site Inventory Form. Environmental Science Associates, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- ESA. 2018. Seattle Center Arena Renovation Project Final Environmental Impact Statement. Environmental Science Associates, Seattle, WA.
- Forsman, Leonard A., Dennis E. Lewarch, and Lynn L. Larson. 1997. Denny Way/Lake Union Combined Sewer Overflow Control Project, Seattle, King County Cultural Resources Assessment. Larson Anthropological/Archaeological Services, Seattle, WA. Prepared for King County Department of Natural Resources, Seattle, WA. Submitted to Brown and Caldwell Engineering Consultants, Seattle, WA.
- Gillespie, Ann, Derek Shaw, and Heather Lee Miller. 2008. Historical Resources Assessment of the Queen Anne Post Office at 415 1st Avenue North, Seattle, King County, Washington. Historical Research Associates, Inc., Seattle, WA. Submitted to United States Postal Service.
- Gillis, Nichole, Dennis E. Lewarch, and Lynn L. Larson. 2005. SR 99: Alaskan Way Viaduct & Seawall Replacement Project Archaeological Resources Monitoring and Review of Geotechnical Borings from Harrison Street to Valley Street. Larson Anthropological Archaeological Services Limited, Gig Harbor, WA. Submitted to Parsons Brinckerhoff Quade & Douglas, Inc., Seattle, WA.
- GLO (General Land Office). 1866. Land Patent for David D. Denny and Louisa Denny (BLM Serial Number WAOAA 071710). Bureau of Land Management, General Land Office Records. Available: http://www.glorecords.blm.gov/details/patent/default.aspx?accession/. Accessed: February 3, 2019.
- Hilbert, Vi, Jay Miller, and Zalmai Zahir. 2001. Puget Sound Geography: Original Manuscript from T.T. Waterman. Zahir Consulting Services, Federal Way, WA.
- Howard, Spencer, and Susan Johnson. 2010. Queen Anne Post Office and Regional Headquarters (45KI1026)

 National Register of Historic Places Registration Form. Artifacts Consulting, Inc., Tacoma, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- King County HPP (King County Historic Preservation Program). 2018. King County Landmarks List. Available: https://www.kingcounty.gov/~/media/services/home-property/historic-preservation/documents/resources/T06_KCLandmarkList.ashx?la=en. Accessed: February 1, 2019.
- Krafft, Katheryn H. 1982. Hull Building (45KI73) National Register of Historic Places Inventory-Nomination Form. Tonkin/Greissinger Architects, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Kreissman, Lawrence. 1983. Seattle, Chief of the Suquamish Statue (45KI574) National Register of Historic Places Inventory-Nomination Form. Office of Urban Conservation, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Kroll (Kroll Map Company, Inc.). 1912. Atlas of King County. Available: http://www.historicmapworks.com/. Accessed: February 1, 2019.
- Kroll. 1926. Atlas of King County. Available: http://www.historicmapworks.com/. Accessed: February 1, 2019.
 Lawrence, Rhoda, and Sonja Sokol Furesz. 2006. Windham Apartments (45KI742) National Register of Historic Places Registration Form. BOLA Architecture + Planning, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Lazzaretto, Christine, John LoCascio, and Kari Fowler. 2017. Century 21-Washington State Coliseum (45KI1379) National Register of Historic Places Registration Form. Historic Resources Group. Pasadena, CA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.

- Metsker (Metsker Maps). 1936. Metsker's Atlas of King Co., Wash. Available: http://www.historicmapworks.com/. Accessed: February 1, 2019.
- Miss, Christian J., Emily Matson, Alicia Valentino, and Charles M. Hodges. 2008. SR 99 Alaskan Way Viaduct & Seawall Replacement Project Results of the Archaeological Core Collection Program, Phase I. Northwest Archaeological Associates, Inc., Seattle, WA and the Environmental History Company, Seattle, WA. Prepared for Washington State Department of Transportation, Seattle, WA.
- NETR Online (Nationwide Environmental Title Research, LLC). 1936. Seattle, WA area. Aerial Photograph. Available: http://www.historicaerials.com. Accessed: February 1, 2019.
- NETR Online. 1968. Seattle, WA area. Aerial Photograph. Available: http://www.historicaerials.com. Accessed: February 1, 2019.
- NETR Online. 1969. Seattle, WA area. Aerial Photograph. Available: http://www.historicaerials.com. Accessed: February 1, 2019.
- NETR Online. 1980. Seattle, WA area. Aerial Photograph. Available: http://www.historicaerials.com. Accessed: February 1, 2019.
- NETR Online. 2002. Seattle, WA area. Aerial Photograph. Available: http://www.historicaerials.com. Accessed: February 1, 2019.
- NETR Online. 2015. Seattle, WA area. Aerial Photograph. Available: http://www.historicaerials.com. Accessed: February 1, 2019.
- NWAA (Northwest Archaeological Associates, Inc.). 2006. TOD-BF Geoarchaeological Examination of Solid-Core Geoprobes: Alaskan Way Viaduct and Seawall Replacement Project. Northwest Archaeological Associates, Inc., Seattle, WA. Prepared for Washington State Department of Transportation, Seattle, WA.
- Pinyerd, Dave. 2013. Belltown #SE03XC064 FCC Form 621. Historic Preservation Northwest. Prepared for Adapt Engineering, Inc.
- Piper, Jessie, and Brandy Rinck. 2014. Cultural Resources Assessment for South Lake Union Block 25 & Block 31 Development, Seattle, King County, Washington. SWCA Environmental Consultants, Seattle, WA. Prepared for EA Engineering, Science, and Technology, Seattle, WA.
- Pratt, Katie and Spencer Howard, 2018a. Uptown Historic Context, July 2018. Northwest Vernacular, Inc. Prepared for the City of Seattle Office of Planning and Community Development.
- Pratt, Katie and Spencer Howard, 2018b. Uptown Historic Resources Survey, August 2018. Northwest Vernacular, Inc. Prepared for the City of Seattle Office of Planning and Community Development.
- Rooke, Lara, Jim Greene, Emily Scott, James C. Chatters, Tim Gerrish, Tyler McWilliams, and Krista Greene. 2010. Cultural Resources Discipline Report for the Aurora Rapid Ride Project-E-Line, NEPA Documented Categorical Exclusion Final Historical, Archaeological, and Cultural Resources Discipline Report. AMEC, Bothell, WA. Prepared for King County Metro Transit, Seattle, WA.
- Sanborn (Sanborn Fire Insurance Maps). 1888. Seattle, Vol. 1, Sheet 31. Sanborn Map Company. Available: http://sanborn.umi.com.ezproxy.spl.org/image/download/pdf/wa/reel10/9315/00042/Seattle+1888%2C+S heet+31.pdf?CCSI=2565n. Accessed: February 1, 2019.
- Sanborn. 1893. Seattle, Vol. 2, Sheet 65a. Sanborn Map Company. Available: http://sanborn.umi.com.ezproxy.spl.org/image/download/pdf/wa/reel10/9315/00166/Seattle+1893+vol.+2 %2C+Sheet+65_b.pdf?CCSI=2565n. Accessed: February 1, 2019.
- Sanborn. 1905. Seattle, Vol. 3, Sheet 255. Sanborn Map Company. Available: http://sanborn.umi.com.ezproxy.spl.org/image/download/pdf/wa/reel10/9315/00457/Seattle+1904-1905+vol.+3+1905%2C+Sheet+255.pdf?CCSI=2565n. Accessed: February 1, 2019.
- Sanborn. 1905-1950. Seattle, Vol. 4, 1917, Sheet 481. Sanborn Map Company. Available: http://sanborn.umi.com.ezproxy.spl.org/image/download/pdf/wa/reel11/9315/00512/Seattle+1905-1950+vol.+4%2C+1917%2C+Sheet+481.pdf?CCSI=2565n. Accessed: February 1, 2019.
- Scott, Emily. 2014. Queen Anne Counterbalance Track Site (45KI1185) State of Washington Archaeological Site Inventory Form. AMEC Environmental & Infrastructure, Bothell, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.

- Sterner, Matthew. 2013. Letter to Steve Archer regarding Eligibility of Site 45KI1146 and Alaskan Way Viaduct, Central Waterfront, Deep-Bore Tunnel Project. Department of Archaeology and Historic Preservation, Olympia, WA. Submitted to Washington State Department of Transportation, Seattle, WA.
- Sullivan, Michael. 2009. Queen Anne Post Office Historic Structures Report (Queen Anne Station and Regional Headquarters). Artifacts Architectural Consulting. Prepared for United States Postal Service.
- USGS (United States Geological Survey). 1903. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1908. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1909. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1911. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1922. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1936. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1955. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1964. Seattle North, WA Quadrangle. Available: at: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USGS. 1969. Seattle North, WA Quadrangle. Available: https://www.historicaerials.com/viewer. Accessed: February 1, 2019.
- USSG (U.S. Surveyor General). 1856. Township 25 North, Range 4 East, Willamette Meridian. General Land Office Map. Available: https://www.blm.gov/or/landrecords/survey/ySrvy1.php. Accessed: February 1, 2019.
- USSG. 1863. Township 25 North, Range 4 East, Willamette Meridian. General Land Office Map. Available: https://www.blm.gov/or/landrecords/survey/ySrvy1.php. Accessed: February 1, 2019.
- Valentino, Alicia B. 2015a. SDOT Maintenance Yard Site (45KI958) State of Washington Archaeological Site Inventory Form Update. Environmental Science Associates, Seattle, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Valentino, Alicia B. 2015b. North Access Connection Project, Archaeological Investigations, 45Ki958, King County, Washington, Technical Memorandum. Environmental Science Associates, Seattle, WA. Prepared for Washington State Department of Transportation.
- Van Galder, Sarah. 2010. SDOT Maintenance Yard Site (45KI958) State of Washington Archaeological Site Inventory Form. Statistical Research, Inc., Lacey, WA. On file at Department of Archaeology and Historic Preservation, Olympia, WA.
- Wegener, Robert M., Karen K. Swope, William A. White, and Edgar K. Huber. 2010. Archaeological Exploration within the Seattle DOT Harrison Street Maintenance Yard in Support of the SR 99 North Access Project, King County, Washington. Statistical Research, Inc., Tucson, AZ. Prepared for Washington State Department of Transportation, Seattle, WA.
- Witt, Thomas. 2008. Cultural Resources Review of 2500 Block of First Avenue, Seattle, WA for the Key Bank National Association Real Estate Transaction and Modernization Program. SWCA Environmental Consultants, Broomfield, Colorado. Prepared for Professional Service Industries, Inc., Kennesaw, Georgia.